Answer:
The value of Kp at this temperature is 7.44*10⁻³
Explanation:
Chemical equilibrium is established when there are two opposite reactions that take place simultaneously at the same speed.
For the general chemical equation for a homogeneous gas phase system:
aA + bB ⇔ cC + dD
where a, b, c and d are the stoichiometric coefficients of compounds A, B, C and D, the equilibrium constant Kp is determined by the following expression:

Where Px is the partial pressure of each of the components once equilibrium has been reached and they are expressed in atmospheres. The equilibrium constant Kp depends solely on temperature and is dimensionless.
In the case of the reaction:
2 HI (g) ⇔ H₂ (g) + I₂ (g)
the equilibrium constant Kp is determined by the following expression:

The system comes to equilibrium at 425 °C, and
- PHI = 0.794 atm
- PH2 = 0.0685 atm
- PI2 = 0.0685 atm
Replacing:

Kp=7.44*10⁻³
<u><em>The value of Kp at this temperature is 7.44*10⁻³</em></u>
Sodium is the reducing agent because a reducing agent is always the donor of electrons.
Answer:
The solution is 50 %wt
Explanation:
50% wt is a sort of concentration and means, that 50 g of solute (in this case, the potassium bromide) dissolved in 100 g of water.
It is the same to say, that there are 50g of KBr for every 100g of H₂O
The theoretical yield of NaBr given that 2.36 moles of FeBr₃ reacts is 7.08 moles
<h3>Balanced equation </h3>
2FeBr₃ + 3Na₂S → Fе₂S₃ + 6NaBr
From the balanced equation above,
2 moles FeBr₃ reacted to produce 6 moles of NaBr
<h3>How to determine the theoretical yield of NaBr</h3>
From the balanced equation above,
2 moles FeBr₃ reacted to produce 6 moles of NaBr
Therefore,
2.36 moles FeBr₃ will react to produce = (2.36 × 6) / 2 = 7.08 moles of NaBr
Therefore,
Thus, the theoretical yield of NaBr is 7.08 moles
Learn more about stoichiometry:
brainly.com/question/14735801
#SPJ1