Answer: A 24 cm piece of string is cut into two pieces , one piece is used to form a circle and the other piece is used to form a square.
How should this string be cut so that the sum of the areas is a minimum .
:
Let x = the circumference of the circle
then
(24-x) = the perimeter of the square
:
Find the area of the circle
find r
2*pi*r = x
r =
Find the area of the circle
A =
A =
A = sq/cm, the area of the circle
:
Find the area of the square
A = sq/cm the area of the square
The total area
At = +
Graph this equation, find the min
Min occurs when x=10.6 cm
cut string 10.6 cm from one end
Step-by-step explanation: Hope I help out alot (-: :-)
Let:
Vbu= Volume of the buret
Vbk= Volume of the beaker
A buret initially contains 70.00 millimeters of a solution and a beaker initially contains 20.00 ml of the solution the buret drips solution into the Beaker. each drip contains 0.05 mL of solution, therefore:
x = Number of drips
a = volume of each drip

after how many drips will the volume of the solution in the buret and beaker be equal ? Vbu = Vbk:
Answer:
495 combinations of 4 students can be selected.
Step-by-step explanation:
The order of the students in the sample is not important. So we use the combinations formula to solve this question.
Combinations formula:
is the number of different combinations of x objects from a set of n elements, given by the following formula.

How many combination of random samples of 4 students can be selected?
4 from a set of 12. So

495 combinations of 4 students can be selected.
The volume is 96.
v=l*w*h
v=6*3*3=54
v=2*3*7=42
54+42=96
Hope this helps