the Answer:
Notice that the "image" triangles are on the opposite side of the center of the dilation (vertices are on opposite side of O from the preimage). Also, notice that the triangles have been rotated 180º.
Step-by-step explanation:
A dilation is a transformation that produces an image that is the same shape as the original but is a different size. The description of a dilation includes the scale factor (constant of dilation) and the center of the dilation. The center of dilation is a fixed point in the plane about which all points are expanded or contracted. The center is the only invariant (not changing) point under a dilation (k ≠1), and may be located inside, outside, or on a figure.
Note:
A dilation is NOT referred to as a rigid transformation (or isometry) because the image is NOT necessarily the same size as the pre-image (and rigid transformations preserve length).
What happens when scale factor k is a negative value?
If the value of scale factor k is negative, the dilation takes place in the opposite direction from the center of dilation on the same straight line containing the center and the pre-image point. (This "opposite" placement may be referred to as being a " directed segment" since it has the property of being located in a specific "direction" in relation to the center of dilation.)
Let's see how a negative dilation affects a triangle:
Notice that the "image" triangles are on the opposite side of the center of the dilation (vertices are on opposite side of O from the preimage). Also, notice that the triangles have been rotated 180º.
7 is the most amount of books that would fit on a 18 inch shelf
To find the acceleration of the bicycle rider, we are going to use the acceleration formula:

where

is the acceleration

is the initial speed

is the final speed

is the time
We know from our problem that increases his speed from 5 m/s to 15 m/s in 10 seconds, so his initial speed is 5 m/s and his final speed is 15 m/s; therefore,

,

, and

. Lets replace those values in our formula:



We can conclude that the acceleration of the bicycle rider 1 m/s^2
Q+P =180 so (Q is 137) p=s so (s is 43) and q = r so (r is 137)