You didn't ask a question just to let you know
These problems are a bit interesting. :)
First let's write the molecular formula for ammonium carbonate.
NH4CO3 (Note! The 4 and 3 are subscripts, and not coefficients)
17.6 gNH4CO3
Now to convert to mol of one of our substances we take the percent composition of that particular part of the molecule and multiply it by our starting mass. This is what it looks like using dimensional analyse.
17.6 gNH4CO3 * (Molar Mass of NH4 / Molar Mass of NH4CO3)
Grab a periodic table (or look one up) and find the molar masses for these molecules! Well. In this case I'll do it for you. (Note: I round the molar masses off to two decimal places)
NH4 = 14.01 + 4*1.01 = 18.05 g/mol
NH4CO3 = 14.01 + 4*1.01 + 12.01 + 3*16.00 = 78.06 g/mol
17.6 gNH4CO3 * (18.05 molNH4 / 78.06 molNH4CO3)
= 4.07 gNH4
Now just take the molar mass we found to convert that amount into moles!
4.07 gNH4 * (1 molNH4 / 18.05 gNH4) = 0.225 molNH4
Answer:
Supersaturated
Explanation:
The tea has absorbed and dissolved as much sugar as it could. If there is sugar left at the bottom, it means the solution is supersaturated because it can't absorb any more.
-<u><em>Oxygen</em></u>
According to Google these are the percentages of the <em>Earths Atmosphere</em>
<em>1</em> 78% - Nitrogen
<u>2</u> 21% - Oxygen
<em>3</em> 0.9% - Argon
<em>4 </em>0.3 - Carbon Dioxide with very small percentage of other elements.
Answer:
In numerical order left to right, they are arranged by the number of protons in the nucleus of a single atom of each element