The molecules are frozen in place but still vibrate
pV = nRT
p = nRT/V
p= 1 x 0.08205 x 1000/ 2
p = 41.025 Pa
Edit: The unit should be atm instead of Pa, as pointed out by a nice human being.
Answer:
<h2>6.64 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula
![n = \frac{N}{L} \\](https://tex.z-dn.net/?f=n%20%3D%20%20%5Cfrac%7BN%7D%7BL%7D%20%5C%5C)
where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have
![n = \frac{4 \times {10}^{24} }{6.02 \times {10}^{23} } \\ = 6.644518...](https://tex.z-dn.net/?f=n%20%3D%20%20%5Cfrac%7B4%20%5Ctimes%20%20%7B10%7D%5E%7B24%7D%20%7D%7B6.02%20%5Ctimes%20%20%7B10%7D%5E%7B23%7D%20%7D%20%20%20%5C%5C%20%20%3D%206.644518...)
We have the final answer as
<h3>6.64 moles</h3>
Hope this helps you
25 gigaseconds is equal to 2,500,000,000,000 centiseconds
In the first situation: the mechanism of covection is the main form of heat transfer when warm air from a heater moves around and upward.
In the case of the metal pan the mechanism of heat transfer is conduction.
In the case of sunburn the mechanism is radiation.
In the case of an ice cube melting in a hand, conduction is the most important mechanism.