Answer:
used to complete the glicolisis process
Explanation:
A glucose molecule will generate the necessary energy to the body to compete their own metabolic processes.
At the begging of the process, the glucose change into 2 molecules of gliceraldehyde 3 - phosphate. In this first process the glucose molecule consume 2 molecules of ATP (the energetic molecule).
After this first process, the aldehyde turns into piruvate, during this process, there is produced 2 molecules of ATP, so it is producing chemical energy.
If during this process the cell need to enter into another metabolic process (pentose ways) then the gain of ATP deplets.
Answer:
19.99% of urea is composed of carbon
plz mark brainliest✌️✌️
The water will started boiling and the pasta is going to start like melting so it can get a soft and smooth texture so you can eat it.
Answer:
Explanation:
a) In an exothermic reaction, the energy transferred to the surroundings from forming new bonds is ___more____ than the energy needed to break existing bonds.
b) In an endothermic reaction, the energy transferred to the surroundings from forming new bonds is ___less____ than the energy needed to break existing bonds.
c) The energy change of an exothermic reaction has a _____negative_______ sign.
d) The energy change of an endothermic reaction has a ____positive________ sign.
The energy changes occur during the bonds formation and bonds breaking.
There are two types of reaction endothermic and exothermic reaction.
Endothermic reactions:
The type of reactions in which energy is absorbed are called endothermic reactions.
In this type of reaction energy needed to break the bond are higher than the energy released during bond formation.
For example:
C + H₂O → CO + H₂
ΔH = +131 kj/mol
it can be written as,
C + H₂O + 131 kj/mol → CO + H₂
Exothermic reaction:
The type of reactions in which energy is released are called exothermic reactions.
In this type of reaction energy needed to break the bonds are less than the energy released during the bond formation.
For example:
Chemical equation:
C + O₂ → CO₂
ΔH = -393 Kj/mol
it can be written as,
C + O₂ → CO₂ + 393 Kj/mol
Salad, a bag of different colored pebbles or sand, etc