Answer:
ola what do u need to do?
Answer:
17. D. Chemical change
18. C. Cell wall
19. D. To transfer matter and energy within and between organisms.
20. A. Transporting materials
21. C. Carbon dioxide
22. A. Cellular respiration
23. C. Produce food and give off oxygen
Explanation:
I have been able to supply the correct answers. The cell wall functions as a structure that provides structural support and protection to the cell. It is tough, flexible and at times rigid. In a chemical change, new materials with new properties are manufactured. So, the process of photosynthesis is a chemical change.
The endoplasmic reticulum actually transports material. It transports materials like protein and lipids made within the cell and sends it to where they are needed.
Carbon dioxide is the the gas that animals give off and plants use it during photosynthesis. Cellular respiration involves the activities that result to the breaking down of food in order to release energy.
Answer:
If 13.4 grams of nitrogen gas reacts we'll produce 16.3 grams of ammonia
Explanation:
Step 1: Data given
Mass of nitrogen gas (N2) = 13.4 grams
Molar mass of N2 = 28 g/mol
Molar mass of NH3 = 17.03 g/mol
Step 2: The balanced equation
N2 + 3H2 → 2NH3
Step 3: Calculate moles of N2
Moles N2 = Mass N2 / molar mass N2
Moles N2 = 13.4 grams / 28.00 g/mol
Moles N2 = 0.479 moles
Step 4: Calculate moles of NH3
For 1 mol N2 we need 3 moles H2 to produce 2 moles NH3
For 0.479 moles N2 we'll produce 2*0.479 = 0.958 moles
Step 5: Calculate mass of NH3
Mass of NH3 = moles NH3 * molar mass NH3
Mass NH3 = 0.958 moles * 17.03 g/mol
Mass NH3 = 16.3 grams
If 13.4 grams of nitrogen gas reacts we'll produce 16.3 grams of ammonia
<span>What
is the ph of an acetic acid solution if 10 drops are titrated with 70
drops of a 0.65 m koh solution? (ka for acetic acid = 1.8 x 10-5)?
[KOH] = 0.65 M
[OH] = 0.65 M
</span>Dilute your mom
<span>[OH]Dil= 0.65 M * 70/80 = 0.56875 M
pH = 5.4
</span>
Potassium dihydrogen phosphate (KH2PO4) and sodium nitrate (NaNO2)
Molecular equation:
KH₂PO₄ (aq) + 3NaNO₂(aq) → Na₃PO₄(s) + KNO₂(aq) + 2HNO₂ (aq)
The net ionic equation is:
3Na⁺(aq) + PO₄⁻(aq) → Na₃PO₄(s)
The rest of the ions are spectator ions and tend to cancel out on both sides of the reaction.