Answer:
If the temperature increases the molecular movement as well, and if it increases the same it will happen with the molecular movement.
Pressure, volume and temperature are three factors that are closely related since they increase the temperature, the pressure usually decreases due to the dispersion of the molecules that can be generated, so the volume also increases.
If the temperature drops, the material becomes denser, its molecules do not collide with each other, their volume and pressure increases.
Explanation:
The pressure is related to the molecular density and the movement that these molecules have.
The movement is regulated by temperature, since if it increases, the friction and collision of the molecules also.
On the other hand, the higher the volume, the less pressure there will be on the molecules, since they are more dispersed among themselves.
(in the opposite case that the volume decreases, the pressure increases)
The adsorbed energy helps in heat the absorption. In the animation, the purple arrows represent energy that is being absorbed from the water
<h3>What is an animation?</h3>
It is a way of making a movie from many still images. The images are put together one after another, and then played at a fast speed to give the illusion of movement.
Someone who makes animations is called an animator.
Learn more about animation:
brainly.com/question/25109803
The problem the answer u are looking for a
Remember that:
number of moles = mass/molar mass
First, we get the molar mass of the nitrogen gas molecule:
It is known the the nitrogen gas is composed of two nitrogen atoms, each with molar mass 14 gm (from the periodic table)
Therefore, molar mass of nitrogen gas = 14 x 2 = 28 gm
Second we calculate the mass of the precipitate:
we have number of moles = 0.03 moles (given)
and molar mass = 28 gm (calculated)
Using the equation mentioned before,
mass = number of moles x molar mass = 0.03 x 28 = 0.84 gm
CO2, C2H2, BeF2, XeF2, etc all these molecules have linear geometry.