Answer:
See the answer below
Explanation:
The chaparral biome is a temperate biome with a characteristic high temperature and dryness during summer and mild rainy winters and springs. The biome can be found in relatively small amounts in the major continents of the world with its rich plant and animal diversity who have successfully adapted to the conditions of the biome.
Due to the high biodiversity of the chaparral biome, <u>one would expect it to be resilient to the loss of a single species.</u> <em>The more the biodiversity of a biome or community, the more resilient such biome or community would be to the loss of species and lower the biodiversity, the more sensitive the community would be to the loss of species. </em>
Explanation:
The given data is as follows.
Weight of solute = 75.8 g, Molecular weight of solute (toulene) = 92.13 g/mol, volume = 200 ml
- Therefore, molarity of toulene is calculated as follows.
Molarity = 
= 
= 4.11 M
Hence, molarity of toulene is 4.11 M.
- As molality is the number of moles of solute present in kg of solvent.
So, we will calculate the molality of toulene as follows.
Molality = 
= 
= 8.6 m
Hence, molality of given toulene solution is 8.6 m.
- Now, calculate the number of moles of toulene as follows.
No. of moles = 
= 
= 0.8227 mol
Now, no. of moles of benzene will be as follows.
No. of moles = 
= 
= 1.2239 mol
Hence, the mole fraction of toulene is as follows.
Mole fraction = 
= 
= 0.402
Hence, mole fraction of toulene is 0.402.
- As density of given solution is 0.857
so, we will calculate the mass of solution as follows.
Density = 
0.857
=
(As 1
= 1 g)
mass = 171.4 g
Therefore, calculate the mass percent of toulene as follows.
Mass % = 
= 
= 44.22%
Therefore, mass percent of toulene is 44.22%.
A measure of thermal energy transferred between two different bodies at different temperatures would be the correct answer. So, the third option.
Answer:
Explanation:
Partial pressure of oil = mole fraction of oil x total pressure
mole fraction of oil = mole of oil / mole of water + mole of oil
= mole of oil = mass of oil / molecular weight of oil
= 20 / 100 = .2
mole of water = 80 / 18
= 4.444
mole fraction of oil = .2 / .2 + 4.444
= .2 / 4.644
Partial pressure of oil = mole fraction of oil x total pressure
= (.2 / 4.644 ) x 760 mm
= 32.73 mm Hg .
4.17 moles. Good luck! :)