The answer is in the bladder.
Type this question into apex learning! Gives you answer and step by step explanation
Answer:
a) H2SO4 + 2KOH -> 2H2O + K2SO4
b) 9.809 ml
Explanation:
Number of Moles = Mass/ Molar Mass
Therefore: Mass = Number of moles * Molar Mass
--------------------------------------------
Molar mass of H2SO4:
H2= 2.02
S= 32.07
O4= 64
--------------------------------------------
H2SO4 has the molar mass of 98.09
--------------------------------------------
the Moles of H2SO4 is given to be 0.100M
Therefore:
Mass= 98.09*0.1
= 9.809g
---------------------------------------------------
Assuming that 1 g= 1 ml, the volume of sulfuric acid is 9.809 ml.
Answer:
The molarity of urea in this solution is 6.39 M.
Explanation:
Molarity (M) is <em>the number of moles of solute in 1 L of solution</em>; that is

To calculate the molality, we need to know the number of moles of urea and the volume of solution in liters. We assume 100 grams of solution.
Our first step is to calculate the moles of urea in 100 grams of the solution,
using the molar mass a conversion factor. The total moles of 100g of a 37.2 percent by mass solution is
60.06 g/mol ÷ 37.2 g = 0.619 mol
Now we need to calculate the volume of 100 grams of solution, and we use density as a conversion factor.
1.032 g/mL ÷ 100 g = 96.9 mL
This solution contains 0.619 moles of urea in 96.9 mL of solution. To express it in molarity, we need to calculate the moles present in 1000 mL (1 L) of the solution.
0.619 mol/96.9 mL × 1000 mL= 6.39 M
Therefore, the molarity of the solution is 6.39 M.
2. answer is C.<span> Elements have the same physical and chemical properties in any period </span>