The vertical columns on the periodic table are called groups or families<span> because of their similar chemical behavior. All the members of a </span>family<span> of </span>elements<span> have the</span>same<span> number of valence electrons and similar chemical properties</span>
Answer:
Explanation:
There are some radioactive nuclides can be used to measure time on an archeological scale. One is the best example of this is radiocarbon dating. This process is based on the ratio of caebon-14 to carbon-12 in the atmosphere which is relatively constant.
The half time of C-14 5730 years
Carbon-14 is a radioactive nucleus. It has a half-life of 5730 years.
All living tissues like plants and animal absorbed carbon-12 along with carbon-14 with same ratio of caebon-14 to carbon-12 in the atmosphere.
Carbon-14 dating is based on the ratio of carbon-14 to carbon-12 in the atmosphere which is relatively constant
Answer:
False
Explanation:
Half life is the time period at which the concentration of the radioactive substance in decay reduced to half.
<u>Thus, if the hydrogen-3 has gone 2 half lives, it means that it has first reduced to its half and then again the half of what it was, i.e. 1/4</u>
Thus, after two successive half-lives, the concentration must be 1/4 of the initial concentration and hence, the statement is false.
1. Answer;
- Exothermic reaction
Explanation;
-Exothermic reactions are types of chemical reactions in which heat energy is released to the surroundings. Since enthalpy change is the difference between the energy of products an that of reactants. It means that in an exothermic reaction the energy of products is less than that of products. In this case an energy of 315kJ is released to the surroundings.
2. Answer;
Conserved
-The total amount of energy before and after a chemical reaction is the same. Thus, energy is conserved.
Explanation;
-According to the law of conservation of energy, energy is neither created nor destroyed. Energy may change form during a chemical reaction. For example, energy may change form from chemical energy to heat energy when gas burns in a furnace. However, the exact amount of energy remains after the reaction as before, which is true for all chemical reactions.