Both ve similar equations
<span>both are energies of one object w.r.t another </span>
<span>differences- electric pe is due to electrostatic force and gravitational pe is due to gravitational force </span>
<span>electric pe is > than gravitational pe since electrostatic force> gravitational force </span>
<span>electron bound in an atom ll ve largest potential enegy in its ground state. i think hope it helps</span>
Answer:
I think, (remember think) it might be 2.0 m/s
Explanation:
If it's wrong I'm truly sorry.
Answer: 1.3 *10^6 Ω*m
Explanation: In order to explain this problem we have to use the following expression for the resistence:
R=L/(σ*A) where L and A are the length and teh area for the wire, respectively. σ is the conductivity of teh Nichrome.
Then, from mteh OHM law we have V=R*I so R=V/I=2/3.2=0.625 Ω
Finally we have:
σ=L/(R*A)=1.3/(0.625*1.6*10^-6)=1.3*10^6 Ω*m
Answer:
1. Motion
2. Empty space
3. Far apart
4. Independently
5. Random or rapid
6. Collision
7. Kinetic energy
8. Atmospheric
9. 273 Kelvin or 0° Celsius
10. 1 atm, 101.3 kPa or 760 mmHg
Explanation:
In science, matter can be defined as anything that has mass and occupies space. Any physical object that is found on earth is typically composed of matter. Matter are known to be made up of atoms and as a result has the property of existing in states.
Generally, matter exists in three (3) distinct or classical phases and these are;
I. Gas.
II. Solid.
III. Liquid.
Filling the missing words or texts in the question, we have;
The kinetic theory describes the motion of particles in matter and the forces of attraction between them. The theory assumes that the volume occupied by a gas is mostly empty space, that the particles of gas are relatively far apart, move independently of each other, and are in constant random or rapid motion. The collision between particles are perfectly elastic so that the total kinetic energy remains constant. Gas pressure results from the simultaneous collisions of billions of particles with an object. Barometers are used to measure atmospheric pressure. Standard conditions are defined as a temperature of 273 Kelvin or 0° Celsius and a pressure of 1 atm, 101.3 kPa or 760 mmHg.