No. 'Thrust' is what most people in aviation call the force
that pushes the aircraft forward.
The same people generally call the upward force on the wing "lift".
Answer:
-0. 75m/s^2
Explanation:
use formula of acceleration
Answer:
Wind the long piece of thin wire around the uniform glass rod multiple times, find the length of the total diameters using the metre ruler, and divide by the number of times you wound it around the rod.
Explanation:
Since the diameter of one long piece of thin wire is too thin to be measured by a metre ruler, you can wind it multiple times and push it side by side to get a length you can measure.
For example, if you wound it around 20 times and the total length of 20 diameters of the wire side-by-side is 2.0 cm, one winding, which is the diameter would be 2.0cm ÷ 20 = 0.10cm or 1mm.
A distance of d is covered with 53 mile/hr initially.
Time taken to cover this distance t1 = d/53 hour
Next distance of d is covered with x mile hours.
Time taken to cover this distance t2 = d/x hours.
We have average speed = 26.5 mile / hour
= Total distance traveled/ total time taken
= 

Answer:
The amount of work the factory worker must to stop the rolling ramp is 294 joules
Explanation:
The object rolling down the frictionless ramp has the following parameters;
The mass of the object = 10 kg
The height from which the object is rolled = 3 meters
The work done by the factory worker to stop the rolling ramp = The initial potential energy, P.E., of the ramp
Where;
The potential energy P.E. = m × g × h
m = The mass of the ramp = 10 kg
g = The acceleration due to gravity = 9.8 m/s²
h = The height from which the object rolls down = 3 m
Therefore, we have;
P.E. = 10 kg × 9.8 m/s² × 3 m = 294 Joules
The work done by the factory worker to stop the rolling ramp = P.E. = 294 joules