Answer:
The x-component of
is 56.148 newtons.
Explanation:
From 1st and 2nd Newton's Law we know that a system is at rest when net acceleration is zero. Then, the vectorial sum of the three forces must be equal to zero. That is:
(1)
Where:
,
,
- External forces exerted on the ring, measured in newtons.
- Vector zero, measured in newtons.
If we know that
,
,
and
, then we construct the following system of linear equations:
(2)
(3)
The solution of this system is:
, 
The x-component of
is 56.148 newtons.
Answer:

Explanation:
The attached figure shows the whole description. Considering the applied force is 100 N.
The acceleration of both blocks A and B, 
Firstly calculating the mass m using the second law of motion as :
F = ma
m is the mass


m = 125 kg
It suddenly encounters a surface that supplies 25.0 N a friction, F' = 25 N



So, the new acceleration of the block is
. Hence, this is the required solution.
<span>A center-seeking force related to acceleration is centripetal force. The answer is letter A. The rest of the choices do not answer the question above.</span>
It will be moving at high speeds