Osmotic pressure is the pressure that would have to be applied to a pure solvent to prevent it from passing into a given solution by osmosis.
That can be mathematical computed from the expression:
Osmotic pressure=C×R×T
Where,
C= Concentration
R=Gas constant
T=Temperature
Concentration=Number of moles of solute/Volume(L)
=0.005*1000/100
=0.05
R= 0.08206 atm L/mol K
T=25+273
=298
Osmotic pressure= 0.05×0.08206×298
=1.2 atm
Answer:
![K_c\text{ = }\frac{[O_2][H_2]\placeholder{⬚}^2}{[H_2O]\placeholder{⬚}^2}](https://tex.z-dn.net/?f=K_c%5Ctext%7B%20%3D%20%7D%5Cfrac%7B%5BO_2%5D%5BH_2%5D%5Cplaceholder%7B%E2%AC%9A%7D%5E2%7D%7B%5BH_2O%5D%5Cplaceholder%7B%E2%AC%9A%7D%5E2%7D)
Explanation:
Here, we want to write the equilibrium constant expression
To write this, we raise the concentrations of the reactants and products to the coefficient before them. These concentrations are represented by square brackets in which the chemical formula of the compound is placed
We place the representation of the products over that of the reactants
We have the expression written as follows:
Answer: Their main aim was to provide goods, specifically furs and sugar exportation.
Explanation:
Hey! Your answer would be the appearance and disappearance of group of organisms
. Hope this helps!