The balanced equation for the generation of sugar from
sunlight water and CO₂ is
6 CO₂ + 6 H₂O → C₆H₁₂O₆ + 6 O₂
carbon dioxide + water → sugar + oxygen
<span>The process of photosynthesis occurs
when the chlorophyll present in the leaves of plants absorb sunlight to make
food in the presence of carbon dioxide (enters through the stomata of leaves)
and water (absorbed from the roots). As a result of this reaction sugar and
oxygen is formed. After that sugar is converted in to starch and oxygen is released
into air.</span>
Answer:
The value of Kc for the reaction is 3.24
Explanation:
A reversible chemical reaction, indicated by a double arrow, occurs in both directions: reagents transforming into products (
direct reaction) and products transforming back into reagents (inverse reaction)
Chemical Equilibrium is the state in which direct and indirect reactions have the same reaction rate. Then taking into account the rate constant of a direct reaction and its inverse the chemical constant Kc is defined.
Being:
aA + bB ⇔ cC + dD
where a, b, c and d are the stoichiometric coefficients, the equilibrium constant with the following equation:
![Kc=\frac{[C]^{c} *[D]^{d} }{[A]^{a} *[B]^{b} }](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BC%5D%5E%7Bc%7D%20%2A%5BD%5D%5E%7Bd%7D%20%7D%7B%5BA%5D%5E%7Ba%7D%20%2A%5BB%5D%5E%7Bb%7D%20%7D)
Kc is equal to the multiplication of the concentrations of the products raised to their stoichiometric coefficients divided by the multiplication of the concentrations of the reagents also raised to their stoichiometric coefficients.
Then, in the reaction 3A(g) + 2B(g) ⇔ 2C(g), the constant Kc is:
![Kc=\frac{[C]^{2} }{[A]^{3} *[B]^{2} }](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BC%5D%5E%7B2%7D%20%7D%7B%5BA%5D%5E%7B3%7D%20%2A%5BB%5D%5E%7B2%7D%20%7D)
where:
- [A]= 0.855 M
- [B]= 1.23 M
- [C]= 1.75 M
Replacing:

Solving you get:
Kc=3.24
<u><em>The value of Kc for the reaction is 3.24</em></u>
1.Molar mass is the mass of one mole per single element while atomic mass is the mass of an atom at rest or is the number of protons and neutrons.
2.Molar mass is measured in grams per mole while atomic mass is “unitless.”
3.Atomic mass is measured via mass spectrometry while molar mass is computed via atomic weight.