Answer: The answer is ∠TUV.
Step-by-step explanation: Given in the question a quadrilateral SVUT with ∠SVU = 112°. We need to determine the angle whose measure will decide whether or not the quadrilateral SVUT is a trapezoid.
We know that for a quadrilateral to be a trapezoid, we need only one condition that one pair of opposite sides must be parallel.
So, in quadrilateral SVUT, since the measure of ∠SVU is given, so we can decide it is a trapezoid or not if we know the measure of ∠TUV. As ST and UV cannot be parallel, so its meaningless to determine ∠TSV.
For SV and TU to be parallel to each other, we need
∠SVU + ∠TUV = 180° (sum of interior alternate angles).
Therefore,
∠TUV = 180° - 112° = 68°.
Thus, we need to determine ∠TUV and its measure shoul be 68°.
Answer:
x = 19
Step-by-step explanation:
A circle has a total of 360 degrees. Because central angles are congruent to the degree measures of their arcs, and because of vertical angles we can construct the equation :
5x+37+5x+37+3x-9-9=360
We can simplify this to :
8x+28=360
Subtract 28, divide 8, and x is 19
Let x be the unknown number. The equation is going to be 7/28=25/x, now we cross multiply. 7*x=25*28, 7x=700, divide both sides by 7 and you should get 100, So, x=100 and 7/28=25/100
Answer:
h(x)= 1/4x
Step-by-step explanation:
4x=4x/1 flip the numerator and denominator to get 1/4x
Substitution
y = 2x - 12
y = -x + 3
-x + 3 = 2x - 12
+ x + x
-----------------------------
3 = 3x - 12
+ 12 + 12
-----------------------
15 = 3x
------ ------
3 3
x = 5
y = 2(5) - 12
y = 10 - 12
y = -2
The final answer is (5,-2).