Answer:C
Step-by-step explanation:
Answer:
Step-by-step explanation:
Use trigonometry
<u>Let the height of the cloud be x, then we have:</u>
- tan 35° = x/525
- x = 525 tan 35°
- x = 367.6 (rounded)
The height of the cloud layer is 367.6 m
Answer:
C
Step-by-step explanation:
In general for arithmetic sequences, recursive formulas are of the form
aₙ = aₙ₋₁ + d,
and the explicit formula (like tₙ in your problem), are of the form
aₙ = a₁ + (n - 1)d,
where d is the common difference. So converting between the two of these isn't so bad. In this case, your problem wants you to have an idea of what t₁ is (well, every answer says it's -5, so there you are) and what tₙ₊₁ is. Using the formulas above and your given tₙ = -5 + (n - 1)78, we can see that the common difference is 78, so no matter what we get ourselves into, the constant being added on at the end should be 78. That automatically throws out answer choice D.
But to narrow it down between the rest of them, you want to use the general form for the recursive formula and substitute (n + 1) for every instance of n. This will let you find tₙ₊₁ to match the requirements of your answer choices. So
tₙ₊₁ = t₍ₙ₊₁₎₋₁ + d ... Simplify the subscript
tₙ₊₁ = tₙ + d
Therefore, your formula for tₙ₊₁ = tₙ + 78, which is answer choice C.
Answer:
Angle ABE = 58
Step-by-step explanation:
This would fulfill the AAA theorem, or 3 angles needing to be congruent. We got 58 by subtracting 89 and 62 from 180, then multiplying that answer by 2 (because it occupies both triangles).
Answer:
Step-by-step explanation:
Given that a popcorn company builds a machine to fill 1 kg bags of popcorn. They test the first hundred bags filled and find that the bags have an average weight of 1,040 grams with a standard deviation of 25 grams.
i.e. Sample mean = 1040 and
Sample std dev s = 25 gm
Sample size n = 100
Hence by central limit theorem we have the sample mean follows a normal distribution with mean =1040 and std dev = s = 25 gm

Normal curve would be with mean 1040 and std deviatin 25
b) P(X>1115)
= 1-0.9987
=0.0013
i.e. 0.13% would receive a bag that had a weight greater than 1115 grams