1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Novay_Z [31]
3 years ago
6

1.

Mathematics
1 answer:
maksim [4K]3 years ago
6 0
1a) 2 lanterns-10 light bulbs
5 lanterns- _ light bulbs

b) The missing term is 25 

c) The scale factors are 2:10 and 5:25, 2 to 10 and 5 to 25, 2/10 and 5/25

Work Shown....

2/10=5/x cross multiply

2x=50/2=25

Hope I helped ya...
Like


You might be interested in
5(y+2/5)=-13<br> what is y
jolli1 [7]

Answer:

y=11/5

Step-by-step explanation:

first divide by 5 on both sides

y+2/5=-13/5

subtract 2/5 on both sides to isolate the y

y=11/5

:))

8 0
2 years ago
Read 2 more answers
How to identify vertical angles
Jet001 [13]

Answer:

You identify them by examining them and if you examine them, eventually you will identify.

7 0
3 years ago
Read 2 more answers
Help me out please !?
Korolek [52]
21in.
1/2*base*height=area of a triangle
Side^4=square area
Square+Triangle(4)=total
Square=9      Triangle=3
4 0
3 years ago
<img src="https://tex.z-dn.net/?f=prove%20that%5C%20%20%5Ctextless%20%5C%20br%20%2F%5C%20%20%5Ctextgreater%20%5C%20%5Cfrac%20%7B
inysia [295]

\large \bigstar \frak{ } \large\underline{\sf{Solution-}}

Consider, LHS

\begin{gathered}\rm \: \dfrac { \tan \theta + \sec \theta - 1 } { \tan \theta - \sec \theta + 1 } \\ \end{gathered}

We know,

\begin{gathered}\boxed{\sf{  \:\rm \: {sec}^{2}x - {tan}^{2}x = 1 \: \: }} \\ \end{gathered}  \\  \\  \text{So, using this identity, we get} \\  \\ \begin{gathered}\rm \: = \:\dfrac { \tan \theta + \sec \theta - ( {sec}^{2}\theta - {tan}^{2}\theta )} { \tan \theta - \sec \theta + 1 } \\ \end{gathered}

We know,

\begin{gathered}\boxed{\sf{  \:\rm \: {x}^{2} - {y}^{2} = (x + y)(x - y) \: \: }} \\ \end{gathered}  \\

So, using this identity, we get

\begin{gathered}\rm \: = \:\dfrac { \tan \theta + \sec \theta - (sec\theta + tan\theta )(sec\theta - tan\theta )} { \tan \theta - \sec \theta + 1 } \\ \end{gathered}

can be rewritten as

\begin{gathered}\rm\:=\:\dfrac {(\sec \theta + tan\theta ) - (sec\theta + tan\theta )(sec\theta -tan\theta )} { \tan \theta - \sec \theta + 1 } \\ \end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:\dfrac {(\sec \theta + tan\theta ) \: \cancel{(1 - sec\theta + tan\theta )}} { \cancel{ \tan \theta - \sec \theta + 1} } \\ \end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:sec\theta + tan\theta \\\end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:\dfrac{1}{cos\theta } + \dfrac{sin\theta }{cos\theta } \\ \end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:\dfrac{1 + sin\theta }{cos\theta } \\ \end{gathered}

<h2>Hence,</h2>

\begin{gathered} \\ \rm\implies \:\boxed{\sf{  \:\rm \: \dfrac { \tan \theta + \sec \theta - 1 } { \tan \theta - \sec \theta + 1 } = \:\dfrac{1 + sin\theta }{cos\theta } \: \: }} \\ \\ \end{gathered}

\rule{190pt}{2pt}

5 0
2 years ago
Baby McKenna wants to arrange 5 blocks in a row. How many different arrangements can she ​make?
kogti [31]

Answer:

I think it 120 times

Step-by-step explanation:

hope this helps!!!

4 0
2 years ago
Other questions:
  • Which of the following is the probability that when rolled a die will come up with either a 1 or a 2?
    12·1 answer
  • Please answer this question now
    7·1 answer
  • subtract the the product of 3 and 4 from 36 then divide by the quotient of 9 and 3, subtracted from 15.
    12·2 answers
  • A golfer strikes a golf ball into the air from the ground. The height, h metres, of the ball
    6·2 answers
  • Find the range of the following set of data:12,2,14,80,100
    15·2 answers
  • I need help I will give brainiest​
    8·2 answers
  • Pls help.
    10·1 answer
  • Find the measure of angle2<br><br> A. 90<br> B. 50<br> C. 60<br> D. 30
    10·1 answer
  • What is the answer to this question?<br> I am confused.
    9·1 answer
  • I NEED HELP NOW...........NO LINKS AND TROLLING PLS
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!