Answer:
g_x = 3.0 m / s^2
Explanation:
Given:
- Change in length of spring [email protected] = 22.6 cm
- Time taken for 11 oscillations t = 19.0 s
Find:
- The value of gravitational free fall g_x at plant X:
Solution:
- We will assume a simple harmonic motion of the mass for which Time is:
T = 2*pi*sqrt(k / m ) ...... 1
- Sum of forces in vertical direction @equilibrium is zero:
F_net = k*x - m*g_x = 0
(k / m) = (g_x / x) .... 2
- substitute Eq 2 into Eq 1:
2*pi / T = sqrt ( g_x / x )
g_x = (2*pi / T )^2 * x
- Evaluate g_x:
g_x = (2*pi / (19 / 11) )^2 * 0.226
g_x = 3.0 m / s^2
The sensation of a frequency is commonly referred to as the pitch of a sound. A high pitch sound corresponds to a high frequency sound wave and a low pitch sound corresponds to a low frequency sound wave. ... That is, two sound waves sound good when played together if one sound has twice the frequency of the other.
First, let's put 22 km/h in m/s:

Now the radial force required to keep an object of mass m, moving in circular motion around a radius R, is given by

The force of friction is given by the normal force (here, just the weight, mg) times the static coefficient of friction:

Notice we don't use the kinetic coefficient even though the bike is moving. This is because when the tires meet the road they are momentarily stationary with the road surface. Otherwise the bike is skidding.
Now set these equal, since friction is the only thing providing the ability to accelerate (turn) without skidding off the road in a line tangent to the curve:
Answer:
Hello there!
Explanation:
A river is a natural flowing watercourse, usually freshwater, flowing towards an ocean, sea, lake or another river. In some cases a river flows into the ground and becomes dry at the end of its course without reaching another body of water. Small rivers can be referred to using names such as stream, creek, brook, rivulet, and rill.
hope this helps!