Answer:
Explanation:
Y = 5 Sin27( .2x-3t)
= 5 Sin(5.4x - 81 t )
Amplitude = 5 m
Angular frequency ω = 81
frequency = ω / 2π
= 81 / (2 x 3.14 )
=12.89
Wave length λ = 2π / k ,
k = 5.4
λ = 2π / 5.4
= 1.163 m
Phase velocity =ω / k
= 81 / 5.4
15 m / s.
The wave is travelling in + ve x - direction.
Answer:
90 hp
Explanation:
Power = work / time
P = ½ (1500 kg) (25 m/s)² / 7.0 s
P = 67,000 W
P = 90 hp
Answer
given,
time = 10 s
ship's speed = 5 Km/h
F = m a
a is the acceleration and m is mass.
In the first case
F₁=m x a₁
where a₁ = difference in velocity / time
F₁ is constant acceleration is also a constant.
Δv₁ = 5 x 0.278
Δv₁ = 1.39 m/s

a₁ = 0.139 m/s²
F₂ =m x a₂
F₃ = F₂ + F₁
Δv₃ = 19 x 0.278
Δv₃ = 5.282 m/s
a₃=Δv₂ / t

a₃ = 0.5282 m²/s
m a₃=m a₁ + m a₂
a₃ = a₂ + a₁
0.5282 = a₂ + 0.139
a₂=0.3892 m²/s
F₂ = m x 0.3892...........(1)
F₁ = m x 0.139...............(2)
F₂/F₁
ratio = 
ratio = 2.8
<h2>
Answer: 0.17</h2>
Explanation:
The Stefan-Boltzmann law establishes that a black body (an ideal body that absorbs or emits all the radiation that incides on it) "emits thermal radiation with a total hemispheric emissive power proportional to the fourth power of its temperature":
(1)
Where:
is the energy radiated by a blackbody radiator per second, per unit area (in Watts). Knowing 
is the Stefan-Boltzmann's constant.
is the Surface area of the body
is the effective temperature of the body (its surface absolute temperature) in Kelvin.
However, there is no ideal black body (ideal radiator) although the radiation of stars like our Sun is quite close. So, in the case of this body, we will use the Stefan-Boltzmann law for real radiator bodies:
(2)
Where
is the body's emissivity
(the value we want to find)
Isolating
from (2):
(3)
Solving:
(4)
Finally:
(5) This is the body's emissivity
Answer:
See Explanation
Explanation:
The principle of conservation of energy states that; energy can neither be created nor destroyed but is converted from one form to another.
In view of this principle, Ella can not be correct when she says that a lot of energy has disappeared. The use of the term "disappeared" connotes the idea that the energy no longer exists which does not happen.
Hence, energy can not "disappear" from hot water rather the energy in the water may be transferred to the surroundings.