
Actually Welcome to the Concept of the Projectile Motion.
Since, here given that, vertical velocity= 50m/s
we know that u*sin(theta) = vertical velocity
so the time taken to reach the maximum height or the time of Ascent is equal to
T = Usin(theta) ÷ g, here g = 9.8 m/s^2
so we get as,
T = 50/9.8
T = 5.10 seconds
thus the time taken to reach max height is 5.10 seconds.
Since there is no friction between the ladder and the wall, there can be no vertical force component. That's the tricky part ;)
So to find the weight, divide the 100N <em>normal</em> force by earths gravitational acceleration, 9.8m/s^2

Then;
Draw an arrow at the base of the ladder pointing towards the wall with a value of 30N, to show the frictional force.
Answer:
The percentage power lost in the transmission line if the voltage not stepped up is 50%.
Explanation:
Given that,
Current = 60 A
Voltage = 120 V
Resistance = 1.0 ohm
We need to calculate the power
Using formula of power

Where,I =current
V = voltage
Put the value into the formula


We need to calculate the percentage power lost in the transmission line
If the voltage is not stepped up
Then, the power loss

Put the value into the formula


The percentage power loss P''


Hence, The percentage power lost in the transmission line if the voltage not stepped up is 50%.
Answer:
The gravitational force is related to the mass of each object.
The gravitational force is an attractive force.
Explanation:
Gravitational force is a long range force of attraction between any two masses.
Mathematically given as :

where:
are the masses
r= distance between the center of mass of the two objects.
G= gravitational constant = 
From the above relation of eq. (1) it is clear that,
Gravitational force is inversely proportional to the square of the distance and directly proportional to the masses.
The mass of an object is independent of its size due to the fact that density may vary for different objects.
The force of gravity varies with height as:

where:

gravity at height
of the center of mass of the object from the center of mass of the earth.
and we know that force:

where: m= mass of the object.
I think that the wavelengths of an incoming solar radiation are shorter than the wavelengths of reradiated heat. This is because the incoming solar radiation to the surface of the earth is in the utraviolet (short) to near infrared (long) wavelength bands. After absorption has taken place, surfaces reradiate heat energy back to the atmosphere at long wavelength infrared.