Answer:
11.9g remains after 48.2 days
Explanation:
All isotope decay follows the equation:
ln [A] = -kt + ln [A]₀
<em>Where [A] is actual amount of the isotope after time t, k is decay constant and [A]₀ the initial amount of the isotope</em>
We can find k from half-life as follows:
k = ln 2 / Half-Life
k = ln2 / 27.7 days
k = 0.025 days⁻¹
t = 48.2 days
[A] = ?
[A]₀ = 39.7mg
ln [A] = -0.025 days⁻¹*48.2 days + ln [39.7mg]
ln[A] = 2.476
[A] = 11.9g remains after 48.2 days
<em />
1 - 8
2 - 13
3 - 20
4 - 19
5 - 19
6 - 22
* protons - Atomic number
electrons - number of electrons is equal to number of protons k-41 is neutral
neutrons - Mass number - Atomic number
= 41 -19
= 22
Answer:
2.5 L.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and T are constant, and have two different values of V and P:
<em>P₁V₁ = P₂V₂
</em>
P₁ = 5.0 atm, V₁ = 3.5 L.
P₂ = 7.0 atm, V₂ = ??? L.
<em>∴ V₂ = P₁V₁/P₂ </em>= (5.0 atm)(3.5 L)/(7.0 atm) = <em>2.5 L.
</em>
Answer:just breath its ok just use brainly
Explanation: