Compounds of hydrogen exhibit a relatively large kinetic isotope effect.
The phenomenon known as the kinetic isotope effect (KIE) is brought on by the variable reaction speeds that are displayed by isotopically substituted compounds. When it comes to studying reaction kinetics, mechanisms, and solvent effects, isotope effects like KIEs are invaluable tools in both physical and biological sciences.
The phenomenon known as the kinetic isotope effect (KIE) is brought on by the variable reaction speeds that are displayed by isotopically substituted compounds. When it comes to studying reaction kinetics, mechanisms, and solvent effects, isotope effects like KIEs are invaluable tools in both physical and biological sciences. The replacement of hydrogen with deuterium is a highly frequent isotope substitution. The ratio kH/kD, which describes this as a "deuterium effect," is used to measure it. Due to the proportion, significant effects are observed.
Learn more about kinetic isotope effect here:
brainly.com/question/20388488
#SPJ4
Answer:
178.35g
Explanation:
Molarity of a solution can be calculated using the formula:
Molarity = number of moles ÷ volume
Based on the information provided in this question, molarity (M) of the solution = 1.50 M, volume = 725 mL = 725/1000 = 0.725L, n = ?
1.50 = n / 0.725
n = 1.50 × 0.725
n = 1.0875mol
Molar mass of Na3PO4
23(3) + 31 + 16(4)
= 69 + 31 + 64
= 164g/mol
Mole = mass ÷ molar mass
1.0875 = mass/164
mass = 178.35g
Answer:
Kenma I'll help you! it's B.
Explanation:
I hope I helped you Kenma