Answer:
a) 90 stamps
b) 108 stamps
c) 333 stamps
Step-by-step explanation:
Whenever you have ratios, just treat them like you would a fraction! For example, a ratio of 1:2 can also look like 1/2!
In this context, you have a ratio of 1:1.5 that represents the ratio of Canadian stamps to stamps from the rest of the world. You can set up two fractions and set them equal to each other in order to solve for the unknown number of Canadian stamps. 1/1.5 is representative of Canada/rest of world. So is x/135, because you are solving for the actual number of Canadian stamps and you already know how many stamps you have from the rest of the world. Set 1/1.5 equal to x/135, and solve for x by cross multiplying. You'll end up with 90.
Solve using the same method for the US! This will look like 1.2/1.5 = x/135. Solve for x, and get 108!
Now, simply add all your stamps together: 90 + 108 + 135. This gets you a total of 333 stamps!
Answer:
Maria
Step-by-step explanation:
Find the ratio of powdered mix to water for each drink.
For Maria:
(2/3 cup) / (2 gallon)
= 1/3 cup per gallon
For Franco:
(1 1/4 cup) / (5 gallon)
= (5/4 cup) / (5 gallon)
= 1/4 cup per gallon
Since 1/3 is bigger than 1/4, Maria's sports drink is stronger.
The three integers are: 12, 13, and 14
12+13=25
25+14=39
If you’re talking about answers a would be the option first b would be 2nd and c would be 3rd
Answer:
The steady state proportion for the U (uninvolved) fraction is 0.4.
Step-by-step explanation:
This can be modeled as a Markov chain, with two states:
U: uninvolved
M: matched
The transitions probability matrix is:

The steady state is that satisfies this product of matrixs:
![[\pi] \cdot [P]=[\pi]](https://tex.z-dn.net/?f=%5B%5Cpi%5D%20%5Ccdot%20%5BP%5D%3D%5B%5Cpi%5D)
being π the matrix of steady-state proportions and P the transition matrix.
If we multiply, we have:

Now we have to solve this equations

We choose one of the equations and solve:

Then, the steady state proportion for the U (uninvolved) fraction is 0.4.