Answer:
a) 4.45 m/s
b) 0.9 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²

a) The vertical speed when the player leaves the ground is 4.45 m/s

Time taken to reach the maximum height is 0.45 seconds

Time taken to reach the ground from the maximum height is 0.45 seconds
b) Time the player stayed in the air is 0.45+0.45 = 0.9 seconds
Answer:
Alloy, metallic substance composed of two or more elements, as either a compound or a solution. The components of alloys are ordinarily themselves metals, though carbon, a nonmetal, is an essential constituent of steel.
Explanation:
Alloys are usually produced by melting the mixture of ingredients. The value of alloys was discovered in very ancient times; brass (copper and zinc) and bronze (copper and tin) were especially important. Today, the most important are the alloy steels, broadly defined as steels containing significant amounts of elements other than iron and carbon. The principal alloying elements for steel are chromium, nickel, manganese, molybdenum, silicon, tungsten, vanadium, and boron have a wide range of special properties, such as hardness, toughness, corrosion resistance, magnetizability, and ductility. Nonferrous alloys, mainly copper–nickel, bronze, and aluminum alloys, are much used in coinage. The distinction between an alloying metal and an impurity is sometimes subtle; in aluminum, for example, silicon may be considered an impurity or a valuable component, depending on the application, because silicon adds strength though it reduces corrosion resistance.
Answer:
1. The length is 8.35m
2. The period on the moon is 14.05 secs
Explanation:
1. Data obtained from the question. This includes the following:
Period (T) = 5.8 secs
Acceleration due to gravity (g) = 9.8 m/s2
Length (L) =...?
The length can be obtained by using the formula given below:
T = 2π√(L/g)
5.8 = 2π√(L/9.8)
Take the square of both side
(5.8)^2 = 4π^2 x L/ 9.8
Cross multiply
4π^2 x L = (5.8)^2 x 9.8
Divide both side by 4π^2
L = (5.8)^2 x 9.8 / 4π^2
L= 8.35 m
2. Data obtained from the question. This includes the following:
Acceleration due to gravity (g) = 1.67 m/s2
Length (L) = 8.35m (the length remains the same)
Period (T) =?
The period can be obtained as follow:
T = 2π√(L/g)
T = 2π√(8.35/1.67)
T = 14.05 secs
Therefore, the period on the moon is 14.05 secs
<h3><u>Given </u><u>:</u><u>-</u><u> </u></h3>
- A certain circuit is composed of two series resistors
- The total resistance is 10 ohms
- One of the resistor is 4 ohms
<h3>
<u>To </u><u>Find </u><u>:</u><u>-</u></h3>
- We have to find the value of other resistor?
<h3><u>Let's </u><u>Begin </u><u>:</u><u>-</u></h3>
We know that,
In series combination,
- When a number of resistances are connected in series, the equivalent I.e resultant resistance is equal to the sum of the individual resistances and is greater than any individual resistance
<u>That </u><u>is</u><u>, </u>
Rn in series = R1 + R2 + R3.....So on
<u>Therefore</u><u>, </u>
<u>According </u><u>to </u><u>the </u><u>question</u><u>, </u>
We have,
R1 + R2 = 10 Ω
4 + R2 = 10Ω
R2 = 10 - 4
R2 = 6Ω
Hence, The value of R2 resistor in series is 6Ω
The final velocity (
) of the first astronaut will be greater than the <em>final velocity</em> of the second astronaut (
) to ensure that the total initial momentum of both astronauts is equal to the total final momentum of both astronauts <em>after throwing the ball</em>.
The given parameters;
- Mass of the first astronaut, = m₁
- Mass of the second astronaut, = m₂
- Initial velocity of the first astronaut, = v₁
- Initial velocity of the second astronaut, = v₂ > v₁
- Mass of the ball, = m
- Speed of the ball, = u
- Final velocity of the first astronaut, =

- Final velocity of the second astronaut, =

The final velocity of the first astronaut relative to the second astronaut after throwing the ball is determined by applying the principle of conservation of linear momentum.

if v₂ > v₁, then
, to conserve the linear momentum.
Thus, the final velocity (
) of the first astronaut will be greater than the <em>final velocity</em> of the second astronaut (
) to ensure that the total initial momentum of both astronauts is equal to the total final momentum of both astronauts after throwing the ball.
Learn more here: brainly.com/question/24424291