Answer:
q = 4870.0524 W
Explanation:
Given that:
![T_{ \infty} = 27^0C = (27+273)K = 300 K](https://tex.z-dn.net/?f=T_%7B%20%5Cinfty%7D%20%20%3D%2027%5E0C%20%3D%20%2827%2B273%29K%20%3D%20300%20K)
![T_s = 523K](https://tex.z-dn.net/?f=T_s%20%3D%20523K)
![T_f = \frac{T _\infty- T_s }{2}](https://tex.z-dn.net/?f=T_f%20%3D%20%5Cfrac%7BT%20_%5Cinfty-%20T_s%20%7D%7B2%7D)
![T_f = \frac{300-523}{2}](https://tex.z-dn.net/?f=T_f%20%3D%20%5Cfrac%7B300-523%7D%7B2%7D)
![T_f =412 K](https://tex.z-dn.net/?f=T_f%20%3D412%20K)
From Table A4; Thermophysical Properties of Gases at Atmospheric Temperature; Properties of air at film Temperature are as follows:
density ![\rho = 0.8478 \ kg/m^3](https://tex.z-dn.net/?f=%5Crho%20%20%3D%200.8478%20%5C%20kg%2Fm%5E3)
kinematic viscosity (v) = ![27.845*10^{-6} \ m^2/s](https://tex.z-dn.net/?f=27.845%2A10%5E%7B-6%7D%20%5C%20m%5E2%2Fs)
thermal conductivity K = ![34.64 *10^{-3 } \ W/m.K](https://tex.z-dn.net/?f=34.64%20%2A10%5E%7B-3%20%7D%20%5C%20W%2Fm.K)
Prandtl number (Pr) = 0.689
Given that :
the length of the plate is = 150 cm = 1.5 m
the width of the plate = 10 cm = 0.1 m
Then the Area = W×L = 1.5 × 0.10 = 0.15 m²
Air flow velocity ![(u_{\infty } )= 50 \ mph = 22.35 m/s](https://tex.z-dn.net/?f=%28u_%7B%5Cinfty%20%7D%20%29%3D%2050%20%5C%20mph%20%3D%2022.35%20m%2Fs)
The Reynolds number
is calculated by using the formula :
![R_{eL} = \frac{\mu_{\infty}L}{v}](https://tex.z-dn.net/?f=R_%7BeL%7D%20%3D%20%5Cfrac%7B%5Cmu_%7B%5Cinfty%7DL%7D%7Bv%7D)
![R_{eL} = \frac{22.35*1.5}{27.845*10^{-6}}](https://tex.z-dn.net/?f=R_%7BeL%7D%20%3D%20%5Cfrac%7B22.35%2A1.5%7D%7B27.845%2A10%5E%7B-6%7D%7D)
turbulent flow.
Thus, we can say that the turbulent flow is throughout the entire plate. Therefore, the appropriate correlation is addressed via the Nusselt number;
![N \bar {u} _L = (0.037R_{eL} -A ) Pr ^{1/3}](https://tex.z-dn.net/?f=N%20%5Cbar%20%7Bu%7D%20_L%20%3D%20%280.037R_%7BeL%7D%20-A%20%29%20Pr%20%5E%7B1%2F3%7D)
where;
![A = 0.037 \ Re ^{4/5}_{x,e} - 0.664 \ Re ^{1/2}_{x,e}](https://tex.z-dn.net/?f=A%20%3D%200.037%20%5C%20Re%20%5E%7B4%2F5%7D_%7Bx%2Ce%7D%20-%200.664%20%5C%20Re%20%5E%7B1%2F2%7D_%7Bx%2Ce%7D)
and ![Re_{x.e} = 5*10^5](https://tex.z-dn.net/?f=Re_%7Bx.e%7D%20%3D%205%2A10%5E5)
Then;
![A = 0.037 \ *5*10^5 ^{(4/5)}- 0.664 \* 5*10^5 ^{(1/2)}](https://tex.z-dn.net/?f=A%20%3D%200.037%20%5C%20%20%2A5%2A10%5E5%20%5E%7B%284%2F5%29%7D-%200.664%20%5C%2A%205%2A10%5E5%20%5E%7B%281%2F2%29%7D)
A = 871
Now;
![N \bar {u} _L = (0.037*1.2*10^6-871 ) *0.689 ^{1/3}](https://tex.z-dn.net/?f=N%20%5Cbar%20%7Bu%7D%20_L%20%3D%20%280.037%2A1.2%2A10%5E6-871%20%29%20%2A0.689%20%5E%7B1%2F3%7D)
![N \bar {u} _L = 3152.24](https://tex.z-dn.net/?f=N%20%5Cbar%20%7Bu%7D%20_L%20%3D%203152.24)
We can now determine the convention coefficient since the
is known. By using the equation;
![\bar {h} = \frac{N \bar {u} _L *k}{L}](https://tex.z-dn.net/?f=%5Cbar%20%7Bh%7D%20%3D%20%5Cfrac%7BN%20%5Cbar%20%7Bu%7D%20_L%20%2Ak%7D%7BL%7D)
![\bar {h} = \frac{3152.24*34.64*10^{-3}}{1.5}](https://tex.z-dn.net/?f=%5Cbar%20%7Bh%7D%20%3D%20%5Cfrac%7B3152.24%2A34.64%2A10%5E%7B-3%7D%7D%7B1.5%7D)
![\bar {h} =72.796 \ W/m^2 .K](https://tex.z-dn.net/?f=%5Cbar%20%7Bh%7D%20%3D72.796%20%5C%20W%2Fm%5E2%20.K)
Finally the rate of heat removal q from both cooling surface of the plate (fin) is calculated as:
![q= 2*A * \bar {h} (T_s - T _ {\infty})](https://tex.z-dn.net/?f=q%3D%202%2AA%20%2A%20%5Cbar%20%7Bh%7D%20%28T_s%20-%20T%20_%20%7B%5Cinfty%7D%29)
![q= 2*0.15 * 72.796 (523 - 300)](https://tex.z-dn.net/?f=q%3D%202%2A0.15%20%2A%2072.796%20%28523%20-%20300%29)
q = 4870.0524 W