Answer: 12 unit.
Step-by-step explanation:
Given : In triangle ABC,
m∠NMO=90°, MN=MO, BK⊥AC, NO∥AC, M∈AC, BK=10, AC=30,
We have to find : NO
Since, NO∥AC,
By the alternative interior angle theorem,
![\angle BNO\cong \angle BAC](https://tex.z-dn.net/?f=%5Cangle%20BNO%5Ccong%20%5Cangle%20BAC)
![\angle BON\cong \angle BCA](https://tex.z-dn.net/?f=%5Cangle%20BON%5Ccong%20%5Cangle%20BCA)
Also,
![\angle NBO\cong \angle ABC](https://tex.z-dn.net/?f=%5Cangle%20NBO%5Ccong%20%5Cangle%20ABC)
Thus, by AAA similarity postulate,
![\triangle NBO\cong \triangle ABC](https://tex.z-dn.net/?f=%5Ctriangle%20NBO%5Ccong%20%5Ctriangle%20ABC)
Let S ∈ NO such that BS ⊥ NO,
By the property of similar triangles,
![\frac{BS}{BK}=\frac{NO}{AC}](https://tex.z-dn.net/?f=%5Cfrac%7BBS%7D%7BBK%7D%3D%5Cfrac%7BNO%7D%7BAC%7D)
-------- (1),
Now, m∠NMO=90° and MN=MO,
Let J ∈ NO, such that MJ⊥NO
⇒ Triangle NMO is a isosceles triangle,
⇒ ∠MNJ = 45°,
![\implies tan 45^{\circ} = \frac{MJ}{NJ}](https://tex.z-dn.net/?f=%5Cimplies%20tan%2045%5E%7B%5Ccirc%7D%20%3D%20%5Cfrac%7BMJ%7D%7BNJ%7D)
![\implies MJ = NJ = SK](https://tex.z-dn.net/?f=%5Cimplies%20MJ%20%3D%20NJ%20%3D%20SK)
-------(2)
From equation (1),
Since, BK=10, AC=30
![\implies 300 - 30 SK = 20 SK \implies 50 SK = 300\implies SK = 6](https://tex.z-dn.net/?f=%5Cimplies%20300%20-%2030%20SK%20%3D%2020%20SK%20%5Cimplies%2050%20SK%20%3D%20300%5Cimplies%20SK%20%3D%206)
From equation (2),
NO = 2 × 6 = 12 unit.