The midpoint of a line segment is the average of the endpoint's coordinates, mathematically:
mp=((x1+x2)/2, (y1+y2)/2)
In this case:
(-4,6)=((8+x)/2, (-2+y)/2)
(-8,12)=((8+x),(y-2))
(-16, 14)=(x,y)
For this case we have that by definition of properties of powers and roots, it is fulfilled that:
![\sqrt [n] {a ^ m} = a ^ {\frac {m} {n}}](https://tex.z-dn.net/?f=%5Csqrt%20%5Bn%5D%20%7Ba%20%5E%20m%7D%20%3D%20a%20%5E%20%7B%5Cfrac%20%7Bm%7D%20%7Bn%7D%7D)
So:
![\sqrt [4] {9 ^ {\frac {1} {2} x}} = 9 ^ {\frac {\frac {1} {2}} {4} x} = 9 ^ {\frac {1} {8} x}](https://tex.z-dn.net/?f=%5Csqrt%20%5B4%5D%20%7B9%20%5E%20%7B%5Cfrac%20%7B1%7D%20%7B2%7D%20x%7D%7D%20%3D%209%20%5E%20%7B%5Cfrac%20%7B%5Cfrac%20%7B1%7D%20%7B2%7D%7D%20%7B4%7D%20x%7D%20%3D%209%20%5E%20%7B%5Cfrac%20%7B1%7D%20%7B8%7D%20x%7D)
So, we have to:
![\sqrt [4] {9 ^ {\frac {1} {2} x}} = 9 ^ {\frac {1} {8} x}](https://tex.z-dn.net/?f=%5Csqrt%20%5B4%5D%20%7B9%20%5E%20%7B%5Cfrac%20%7B1%7D%20%7B2%7D%20x%7D%7D%20%3D%209%20%5E%20%7B%5Cfrac%20%7B1%7D%20%7B8%7D%20x%7D)
Answer:

Option B
Answer:
Maybe for you....
Step-by-step explanation:
;'(
Answer:
Step-by-step explanation:
Distance :
Midpoint :
x (m) = (2+9)/2 = 11/2
y (m) = (-14-9)/2 = -23/2
M (11/2, -23/2)
The midpoint formula is basically just the average of the two points. Here it is:

Then, you plug the points in. The answer is (-13,-5/2) or
C