Answer:
The answer to your question is given below
Explanation:
From the question given above, we can see that the wave with a higher frequency has a shorter wavelength while that with a lower frequency has a longer wavelength. This is so because the frequency and wavelength of a wave has inverse relationship. This can further be explained by using the following formula:
Velocity = wavelength x frequency
Divide both side by wavelength
Frequency = Velocity /wavelength
Keeping the velocity constant, we have:
Frequency ∝ 1 / wavelength
From the above illustration, we can see clearly that the frequency and wavelength are in inverse relationship. This implies that the higher the frequency, the shorter the wavelength and the shorter the frequency, the higher the wavelength.
Answer:
The frequency does not depend on the amplitude for any (ideal) mechanical or electromagnetic waves.
In electromagnetism we have that the relation is:
Velocity = wavelenght*frequency.
So the amplitude of the wave does not have any effect here.
For a mechanical system like an harmonic oscillator (that can be used to describe almost any oscillating system), we have that the frequency is:
f = (1/2*pi)*√(k/m)
Where m is the mass and k is the constant of the spring, again, you can see that the frequency only depends on the physical properties of the system, and no in how much you displace it from the equilibrium position.
This happens because as more you displace the mass from the equilibrium position, more will be the force acting on the mass, so while the "path" that the mass has to travel is bigger, the mas moves faster, so the frequency remains unaffected.
Because it is not a good conductor of heat. so the answer is D.
I = pressure amplitude given = 0.2 W/m²
dB = decibel reading
decibel reading from the pressure amplitude is given as
dB = 10 log₁₀ (I/10⁻¹²)
inserting the values in the above equation
dB = 10 log₁₀ (0.2/10⁻¹²)
dB = 10 log₁₀ (2 x 10⁻¹/10⁻¹²)
dB = 10 log₁₀ (2 x 10⁻¹.10¹²)
dB = 10 log₁₀ (2 x 10¹²⁻¹)
dB = 10 log₁₀ (2 x 10¹¹)
dB = 113.01 db
hence the decibel reading comes out to be 113.01 db
The speed of light : 299 792 458 m / s