Answer:
<em>Hello Todo Here! ^^</em>
Explanation:
A chemical reaction or physical change is exothermic if heat is released by the system into the surroundings. Because the surroundings are gaining heat from the system, the temperature of the surroundings increases. The sign of \(q\) for an exothermic process is negative because the system is losing heat.
<em>happy to help!</em>
For the purpose of proper representation in this item, we let the number of moles of carbon in the compound be x, that of H is y. The equation of toluene now becomes,
CxHy
The combustion reaction is,
CxHy + O2 --> CO2 + H2O
The equation presented above may not be balanced yet. Then, we determine the number of mmols of C, H, and O in the product using the given masses.
(1) 8.20 mg CO2
(8.2 mg CO2)(1 mmol CO2/44 mg CO2) = 0.186 mmol CO2
which means,
0.186 mmol C
0.373 mmol O
(2) 1.92 mg H2O
(1.92 mg H2O)(1 mmol H2O/18 mg H2O) = 0.107 mmol H2O
which means
0.2133 mmol H
0.107 mmol O
Thus, the equation for toluene is,
C(0.186)H(0.2133)
Dividing the numbers by the lesser value,
CH(8/7)
To eliminate the fraction, we multiply by the denominator. Thus, the final answer would be,
<em> C7H8</em>
Answer:
76.1 amu
Explanation:
Let us recall that isomers refer to two different compounds with the same molecular formula but different atom to atom connectivity and different chemical properties. When two compounds are isomers, we can essentially represent them with exactly the same molecular formula.
Now propane-1,2-diol and propane-1,3-diol are both represented by the molecular formula C3H8O2 since they are isomers of each other. When two compounds have the same molecular formula, they must essentially have the same molecular mass. Hence the molecular mass of propane-1,3-diol is also 76.1 amu.
Answer:
Electronegativity generally increases from left to right across a period,
Explanation:
The true statement from the given choices is that electronegativity generally increases from left to right across a period.
Electronegativity is the measure of the relative tendency with which an atom of the element attract valence electrons in a chemical bond.
Across a period electronegativity increases from left to right and decreases down the group.
This is due to reduction in metallic properties as we move across the period from left to right.