Answer :
(a) The density of mercury is, 13.6 g/ml
(b) The mass of 120.0 ml of mercury is, 1632 grams
Explanation :
(a) Now we have to calculate the density of mercury.
<u>Given :</u>
Volume of mercury = 25.0 ml
Mass of mercury = 340.0 g
Formula used :


Therefore, the density of mercury is, 13.6 g/ml
(b) Now we have to calculate the mass of 120.0 ml of mercury.
As, 25.0 ml of mercury has mass = 340.0 g
So, 120.0 ml of mercury has mass = 
Therefore, the mass of 120.0 ml of mercury is, 1632 grams
Answer:
46.3g H2O
Explanation:
start by balancing it: CaC2(s) + 2H2O(g) -> Ca(OH)2(s) + C2H2(g)
then use factor label method to solve
82.4g CaC2 x (1 mol CaC2/64.10g CaC2) x (2 mol H2O/1 mol CaC2) x (18.016g H2O/1 mol H20) = 46.3g H2O
An exergonic reaction is a chemical reaction where the change in the free energy is negative (there is a net release of free energy),[1] indicating a spontaneous reaction. For processes that take place under constant pressure and temperature conditions, the Gibbs free energy is used whereas the Helmholtz energy is used for processes that take place under constant volume and temperature conditions.
Symbolically, the release of free energy, G, in an exergonic reaction (at constant pressure and temperature) is denoted as
{\displaystyle \Delta G=G_{\rm {products}}-G_{\rm {reactants}}<0.\,}
Although exergonic reactions are said to occur spontaneously, this does not imply that the reaction will take place at an observable rate. For instance, the disproportionation of hydrogen peroxide is very slow in the absence of a suitable catalyst. It has been suggested that eager would be a more intuitive term in this context.[2]
More generally, the terms exergonic and endergonic relate to the free energy change in any process, not just chemical reactions. An example of an exergonic reaction is cellular respiration. This relates to the degrees of freedom as a consequence of entropy, the temperature, and the difference in heat released or absorbed.
By contrast, the terms exothermic and endothermic relate to the overall exchange of heat during a process
Ice cubes are made of water which has undergone freezing, which made it into ice. Both ice cubes and water have the same properties. But in this case, when ice and water are mixed, it is considered a heterogeneous mixture and not homogeneous. Why? Going back to the definition of what a heterogeneous mixture is, this mixture shows a visible difference of difference phases or substances. In the ice and water mixture, it is obviously seen that ice is solid, and water is liquid.