1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zielflug [23.3K]
3 years ago
5

Two sections of a class took the same quiz. Section A had 15 students who had a mean score of 80, and section B had 20 students

who had a mean score of 90. Overall, what was the approximate mean score for all the students on the quiz?
A. 84.3
B. 85
C. none of these
D. cannot be determined
Mathematics
2 answers:
faltersainse [42]3 years ago
8 0
B, because when you add 90+80 you get 170 and 170/2 = 85
alekssr [168]3 years ago
3 0

Answer:

Option B. 85

Step-by-step explanation:

Two sections of a class took the same quiz.

Mean score of section A of 15 students = 80

Mean score of section B of 20 students = 90

We will calculate the approximate mean score for all the students.

The pool mean is the mean of means of two or more groups. We will find it by this formula = \frac{\text{sum of means}}{\text total number of groups}

                   = \frac{80+90}{2}

                   = 85

The approximate mean score for all the students on the quiz was 85.

You might be interested in
Tickets to the zoo cost $14 for adults and $10 for children. A group of 12 people went to the zoo, and the tickets cost $140. Th
hjlf
 x is the number of adults and y is the number of children.
   x + y = 12
<span>14x + 10y = 140
lets multiply the first equation by -10 and then add it to the second equation:
-10x - 10y = -120
</span>14x + 10y = <span>140
</span>-----------------------
4x + 0 = 20
x = 20/4
x = 5
then substitute in the original equation:
x + y = <span>12
</span>5 + y = <span>12
</span>y = 12 - 5
y = 7
therefore there were 5 adults and 7 children
8 0
3 years ago
Solve for 44.<br> 51°<br> 64 = [?]<br> 44 42=72°<br> 57°<br> I
Anastaziya [24]

Answer:

look at the picture i have sent

6 0
3 years ago
Read 2 more answers
PLEASE ANSWER ALL
mars1129 [50]

Step-by-step explanation:

The axis of symmetry: is the line that makes the parabola split in exactly half and lines up with the vertex. For that parabola x=1 is the line of symetry.

The vertex is where the minimum of the graph is, on this graph you can eyeball it to be (1,-9)

The x-intercept is where y is 0 so that's where the lines intersex with the x-axis. (-2,0) and (4,0)

The y-intercept of the function is where x is 0 and where the parabola intersects with the y-axis. On this graph it would be (0,-8)

Hope that helps :)

4 0
3 years ago
2x + 5(y - 1) when x=8 and y=5
Travka [436]

Answer:

16+24=40

Step-by-step explanation: 2x+5(y-1) when x=8 and y=5. put x where it belongs, by the 2 and do the same with y, by the -1. and then slove. 2*8= 16 , 5*5= 25-1, then add 16 and 24 together and get 40.

5 0
3 years ago
Sea un cuadrado de 2 pulgadas de lado uniendo los puntos medios se obtiene otro cuadrado inscrito en el anterior si repetimos es
Ne4ueva [31]

Answer:

1) La serie geométrica formada es

4, 2, 1,..., ∞

2) La suma al infinito de las áreas de los cuadrados es 8 in.²

Step-by-step explanation:

1) El área del primer cuadrado, a₁ = 2² = 4 pulgadas²

El área del siguiente cuadrado, a₂ = (√ (1² + 1²)) ² = (√2) ² = 2 pulg²

El área del siguiente cuadrado, a₃ = ((√ (2) / 2) ² + (√ (2) / 2) ²) = 1 pulg²

Por lo tanto, la razón común, r = a₂ / a₁ = 2/4 = a₃ / a₂ = 1/2

Las áreas de los cuadrados progresivos forman una progresión geométrica como sigue;

4, 4×(1/2), 4 ×(1/2)²,...,4×(1/2)^{\infty}

De donde obtenemos la serie geométrica formada de la siguiente manera;

4, 2, 1,..., ∞

2) La suma de 'n' términos de una progresión geométrica hasta el infinito para -1 <r <1 se da como sigue;

S_{\infty} = \dfrac{a}{1 - r}

Por lo tanto, la suma de las áreas de los cuadrados hasta el infinito se obtiene sustituyendo los valores de 'a' y 'r' en la ecuación anterior de la siguiente manera;

La \ suma \ al \ infinito \ del \ cuadrado \ S_{\infty}  = \dfrac{4 \ in.^2}{1 - \dfrac{1}{2} } = \dfrac{4 \ in.^2}{\left(\dfrac{1}{2} \right)} = 2 \times 4 \ in.^2= 8 \ in.^2

La suma al infinito de las áreas de los cuadrados, S_{\infty} = 8 in.²

7 0
2 years ago
Other questions:
  • The graph of f(x)= |x| is transformed to g(x)=|x+1|-7. On which interval is the function decreasing
    9·1 answer
  • What is i^5????? Pls help
    9·2 answers
  • Prove: Every point of S=(0, 1) is an interior point of S.
    7·1 answer
  • Find the equation of the line y= _x+_
    10·1 answer
  • The intersection of a triangle and a line could be a segment<br> True or False
    8·1 answer
  • Ten pennies make a dime. How many pennies make five dimes?
    5·2 answers
  • When Elijah left his house in the morning, his cell phone battery was partially
    10·1 answer
  • What is the difference between balance forces and unbalance forces?​
    15·1 answer
  • The equation below describes a proportional relationship between x and y. What is the constant of proportionality? y = 2/9x
    9·1 answer
  • <img src="https://tex.z-dn.net/?f=%20%5Cbold%7B%2810x%20-%206x%C2%B3%20%2B%208x%C2%B2%29%20-%20%285x%C2%B2%20%2B%2012x%C2%B3%20-
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!