<span>One problem with his atomic theory was that it claimed that all matter is composed of tiny indivisible atoms.</span>
<h3>
Answer:</h3>
The pressure increases by 10% of the original pressure
Thus the new pressure is 1.1 times the original pressure.
<h3>
Explanation:</h3>
We are given;
- Initial temperature as 30°C, but K = °C + 273.15
- Thus, Initial temperature, T1 =303.15 K
- Final temperature, T2 is 333.15 K
We are required to state what happens to the pressure;
- We are going to base our arguments to Pressure law;
- According to pressure law, the pressure of a gas and its temperature are directly proportional at a constant volume
- That is; P α T
- Therefore, at varying pressure and temperature

Assuming the initial pressure, P1 is P
Rearranging the formula;
[tex]P2=\frac{P1T2}{T1}[/tex]


= 1.10 P
The new pressure becomes 1.10P
This means the pressure has increased by 10%
We can conclude that, the new pressure will be 1.1 times the original pressure.
Answer:
Most similar - Lithium
Least similar - Phosphorus
Explanation:
Rubidium is an element in group 1A of the periodic table. It is a metal and forms an ionic compound with chlorine. The formula of the compound is RbCl.
If we look at the options, Lithium is also a group 1A element and forms an ionic compound with chlorine having the formula LiCl which is very much similar to RbCl chemically.
Phosphorus is a nonmetal. Its compounds with chlorine, PCl3 and PCl5 are covalent and does not resemble RbCl in any way.
Answer : The one diagram which shows the electron with the highest potential energy is attached below.
Explanation : One can easily find the highest potential energy of the atom just by looking at the diagram, the electron which is from farthest distance from the atomic nucleus will have the highest potential energy in the electron.
Answer:
Covalent Bonds
Explanation:
INTERmolecular forces are those that exist between molecules, so you can think of it liek international things taking place between countries. As you are aware, dipoles exist across an entire molecule, so for 2 dipoles to interact, there needs to be 2 molecules. Van der Waals forces also take place between molecules when there is an uneven distribution of electrons across a molecule, causing a temporary weak dipole. Hydrogen bonding is similar to dipole-dipole forces, but only happen when there is a hydrogen interacting with an atom on another molecule that has a lone pair of electrons.
Covalent bonds, however, are INTRAmolecular, meaning they are present within a molecule. Covalent bonds are the bonds that exist when two atoms, within the same molecule, share electrons so both can have a stable electron configuration.
Hope I helped! xx