Answer:
The probability that <em>X</em> is less than 42 is 0.1271.
Step-by-step explanation:
The random variable <em>X </em>follows a Normal distribution.
The mean and standard deviation are:
E (X) = <em>μ</em> = 50.
SD (X) = <em>σ</em> = 7.
A normal distribution is continuous probability distribution.
The Normal probability distribution with mean µ and standard deviation σ is given by,
To compute the probability of a Normal random variable we first standardize the raw score.
The raw scores are standardized using the formula:
These standardized scores are known as <em>z</em>-scores and they follow normal distribution with mean 0 and standard deviation 1.
Compute the probability of (X < 42) as follows:
*Use a <em>z</em>-table for the probability.
Thus, the probability that <em>X</em> is less than 42 is 0.1271.
The normal curve is shown below.
Answer 97 because the answer is already above
Pls mark brainliest
Answer:
A
Step-by-step explanation:
it is like your hands hold your hand put to make a l shape that is 90⁰ and imaine that more opened out.
Answer:
The area of the shape is .
Step-by-step explanation:
The shape in the graph is a composite figure is made up of several simple geometric figures such as triangles, and rectangles.
Area is the space inside of a two-dimensional shape. We can also think of area as the amount of space a shape covers.
To calculate the area of a composite shape you must divide the shape into rectangles, triangles or other shapes you can find the area of and then add the areas back together.
First separate the composite shape into three simpler shapes, in this case two rectangles and a triangle. Then find the area of each figure.
To find the area of a rectangle, we multiply the length of the rectangle by the width of the rectangle.
The area of the first rectangle is
The area of the second rectangle is
The area of a triangle is given by the formula where <em>b</em> is the base and <em>h</em> is the height of the triangle.
The area of the triangle is
Finally, add the areas of the simpler figures together to find the total area of the composite figure.
Assignment:
<><><><><>
Answer:
<><><><><>
Explanation:
<><><><><>
[ Step One ] Rewrite
[ Step Two ] Apply perfect square formula
Note: Perfect Square Formula:
<><><><><><><>