0.5 is a rational number.
Answer:
Find the Roots (Zeros) f(x)=x^3-6x^2+13x-20. f(x)=x3−6x2+13x−20 f ( x ) = x 3 - 6 x 2 + 13 x - 20. Set x3−6x2+13x−20 x 3 - 6 x 2 + 13 x - 20 equal to 0 0 .
Step-by-step explanation:
hope this helps
The sum of the given series can be found by simplification of the number
of terms in the series.
- A is approximately <u>2020.022</u>
Reasons:
The given sequence is presented as follows;
A = 1011 + 337 + 337/2 + 1011/10 + 337/5 + ... + 1/2021
Therefore;
The n + 1 th term of the sequence, 1, 3, 6, 10, 15, ..., 2021 is given as follows;
Therefore, for the last term we have;
2 × 2043231 = n² + 3·n + 2
Which gives;
n² + 3·n + 2 - 2 × 2043231 = n² + 3·n - 4086460 = 0
Which gives, the number of terms, n = 2020


Which gives;


Learn more about the sum of a series here:
brainly.com/question/190295
Answer:
the answer is 4k^2+9k+108
Step-by-step explanation:
<u>Answer:</u>
The correct answer option is D.
.
<u>Step-by-step explanation:</u>
We are given the following expression and we are to simplify it:

Here the variables
and
are having negative powers. So to change these powers from negative to positive, we will take their reciprocals to get:
