Answer: Does not exist.
Step-by-step explanation:
Since, given function, f(x) = 6x tan x, where −π/2 < x < π/2.
⇒ f(x) = 
And, for vertical asymptote, cosx= 0
⇒ x = π/2 + nπ where n is any integer.
But, for any n x is does not exist in the interval ( -π/2, π/2)
Therefore, vertical asymptote of f(x) where −π/2 < x < π/2 does not exist.
Answer:
the answer to the problem is -18
You need to divide-4 on both sides which will get you 8.hope this helps
The answer is 270, the pattern is multiplying by 3. So, 10 • 3 = 30 30 • 3 = 90 90 • 3 = 270, and so on. Hope this helps! Let me know if you need any further assistant.
Operations that can be applied to a matrix in the process of Gauss Jordan elimination are :
replacing the row with twice that row
replacing a row with the sum of that row and another row
swapping rows
Step-by-step explanation:
Gauss-Jordan Elimination is a matrix based way used to solve linear equations or to find inverse of a matrix.
The elimentary row(or column) operations that can be used are:
1. Swap any two rows(or colums)
2. Add or subtract scalar multiple of one row(column) to another row(column)
as is done in replacing a row with sum of that row and another row.
3. Multiply any row (or column) entirely by a non zero scalar as is done in replacing the row with twice the row, here scalar used = 2