1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
soldi70 [24.7K]
4 years ago
14

Which type of robots will NASA use to study the outer space and planets in our solar system?

Engineering
1 answer:
stealth61 [152]4 years ago
5 0

Answer: These robots study planets from space. The Cassini spacecraft is this type of robot. Cassini studies Saturn and its moons and rings. The Voyager and Pioneer spacecraft are now traveling beyond our solar system

Explanation:

You might be interested in
What is the purpose of the graphic language?
solmaris [256]

Answer:

enables the representation, analysis and communication of various aspects of an information system. These aspects correspond to varying and incomplete views of information systems and the processes therein.

5 0
3 years ago
Consider a modification of the air-standard Otto cycle in which the isentropic compression and expansion processes are each repl
Ulleksa [173]

Answer:

The answers to the question are

(1) Process 1 to 2

W = 295.16 kJ/kg

Q = -73.79 kJ/kg

(2) Process 2 to 3

W = 0

Q = 1135.376 kJ/kg

(3) Process 3 to 4

W = -1049.835 kJ/kg

Q = 262.459 kJ/kg

(4) Process 4 to 3

W=0

Q = -569.09 kJ/kg

(b) The thermal efficiency = 49.9 %

(c) The mean effective pressure is 9.44 bar

Explanation:

(a) Volume compression ratio \frac{v_1}{v_2}  = 10

Initial pressure p₁ = 1 bar

Initial temperature, T₁ = 310 K

cp = 1.005 kJ/kg⋅K

Temperature T₃ = 2200 K from the isentropic chart of the Otto cycle

For a polytropic process we have

\frac{p_1}{p_2}  = (\frac{v_2}{v_1} )^n Therefore p₂ = p₁ ÷ (\frac{v_2}{v_1} )^n = (1 bar) ÷ (\frac{1}{10} )^{1.3} = 19.953 bar

Similarly for a polytropic process we have

\frac{T_1}{T_2}  = (\frac{v_2}{v_1} )^{n-1} or T₂ = T₁ ÷ (\frac{v_2}{v_1} )^{n-1} = \frac{310}{0.1^{0.3}} = 618.531 K

The molar mass of air is 28.9628 g/mol.

Therefore R = \frac{8.3145}{28.9628} = 0.287 kJ/kg⋅K

cp = 1.005 kJ/kg⋅K Therefore cv = cp - R =  1.005- 0.287 = 0.718 kJ/kg⋅K

1). For process 1 to 2 which is polytropic process we have

W = \frac{R(T_2-T_1)}{n-1} = \frac{0.287(618.531-310)}{1.3 - 1}= 295.16 kJ/kg

Q =(\frac{n-\gamma}{\gamma - 1} )W = (\frac{1.3-1.4}{1.4-1} ) 295.16 kJ/kg = -73.79 kJ/kg

W = 295.16 kJ/kg

Q = -73.79 kJ/kg

2). For process 2 to 3 which is reversible constant volume heating we have

W = 0 and Q = cv×(T₃ - T₂) = 0.718× (2200-618.531) = 1135.376 kJ/kg

W = 0

Q = 1135.376 kJ/kg

3). For process 3 to 4 which is polytropic process we have

W = \frac{R(T_4-T_3)}{n-1} = Where T₄ is given by  \frac{T_4}{T_3}  = (\frac{v_3}{v_4} )^{n-1} or T₄ = T₃ ×0.1^{0.3}

= 2200 ×0.1^{0.3}  T₄ = 1102.611 K

W =  \frac{0.287(1102.611-2200)}{1.3 - 1}= -1049.835 kJ/kg

and Q = 262.459 kJ/kg

W = -1049.835 kJ/kg

Q = 262.459 kJ/kg

4). For process 4 to 1 which is reversible constant volume cooling we have

W = 0 and Q = cv×(T₁ - T₄) = 0.718×(310 - 1102.611) = -569.09 kJ/kg

W=0

Q = -569.09 kJ/kg

(b) The thermal efficiency is given by

\eta = 1-\frac{T_4-T_1}{T_3-T_2} =1-\frac{1102.611-310}{2200-618.531} = 0.499 or 49.9 % Efficient

(c) The mean effective pressure is given by

p_{m}  = \frac{p_1r[(r^{n-1}-1)(r_p-1)]}{ (n-1)(r-1)}  where r = compression ratio and r_p = \frac{p_3}{p_2}

However p₃ = \frac{p_2T_3}{T_2} =\frac{(19.953)(2200)}{618.531} =70.97 atm

r_p = \frac{p_3}{p_2} = \frac{70.97}{19.953}  = 3.56

Therefore p_m =\frac{1*10*[(10^{0.3}-1)(3.56-1)]}{0.3*9} = 9.44 bar

Please find attached generalized diagrams of the Otto cycle

8 0
3 years ago
A masonry facade consisting of 3,800 square feet is to be constructed for a building. The total cost per worker hour is estimate
lana66690 [7]

Answer:

Days: 6.9444 days

Production rate: 547.2035 ft²/s

Explanation:

the solution is attached in the Word file

Download docx
6 0
3 years ago
State the four advantages of levers
dezoksy [38]

Answer:

Here are 2 sense i cant find 4

Explanation:

Levers are used to multiply force, In other words, using a lever gives you greater force or power than the effort you put in.

In a lever, if the distance from the effort to the fulcrum is longer than the distance from the load to the fulcrum, this gives a greater mechanical advantage.

3 0
3 years ago
How many hours should it take an articulated wheel loader equipped with a 4-yd^3 bucket to load 3000 yd^3 of gravel (average mat
densk [106]

Answer:

17 hours 15 minutes

Explanation:

See attached picture.

4 0
4 years ago
Other questions:
  • A pressure gage connected to a tank reads 50 psi at a location where the barometric reading is 29.1 inches Hg. Determine the abs
    6·1 answer
  • A 860 kΩ resistor has 34 μA of current. What is the supply voltage for this electric circuit?
    13·2 answers
  • Ok I need a new laptop but I'm not sure which one. The Surface laptop 3 is better in many fields like the camera, speaker, audio
    14·1 answer
  • A block of mass 0.75 kg is suspended from a spring having a stiffness of 150 N/m. The block is displaced downwards from its equi
    5·2 answers
  • true or false: the types of building materials that’s should be used in a project does not constitute a conditional for projects
    13·2 answers
  • 19. A circuit contains four 100 S2 resistors connected in series. If you test the circuit with a digital VOM,
    9·1 answer
  • Complex machines are defined by
    8·1 answer
  • The volume of microbial culture is observed to increase according to the formula
    15·1 answer
  • Motors are used to convert electrical energy into mechanical work and the output mechanical work of a motor is rated in horsepow
    9·1 answer
  • The sum of forces on node 2 (upper-left) is ______.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!