1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svet-max [94.6K]
3 years ago
15

we wish to send at a rate of 10Mbits/s over a passband channel. Assuming that an excess bandwidth of 50% is used, how much bandw

idth is needed for each of the following schemes: QPSK 64QAM, and 64-ary noncoherent orthogonal modulation useing a Walsh Hadamard code

Engineering
1 answer:
gayaneshka [121]3 years ago
6 0

Answer:

QPSK: 7.5 MHz

64-QAM:2.5 MHz

64-Walsh-Hadamard: 160 MHz

Explanation:

See attached picture.

You might be interested in
List the parts of a manual transmission <br><br> List the parts of a typical clutch assembly?
True [87]

Answer:

Explanation: Clutch Plate.

Clutch Cover.

Clutch Bearing (Release bearing)

Release Fork (clutch fork)

7 0
2 years ago
Q2) An engineer borrowed $3000 from the bank, payable in six equal end-of-year payments at 8%. The bank agreed to reduce the int
tatyana61 [14]
Answer is: $637.28; just did the math but i really don’t want to type it all out.
6 0
3 years ago
Consider a cubic workpiece of rigid perfect plastic material with side length lo. The cube is deformed plastically to the shape
Taya2010 [7]

Answer:  ε₁+ε₂+ε₃ = 0

Explanation: Considering the initial and final volume to be constant which gives rise to the relation:-

                         l₀l₀l₀=l₁l₂l₃

                        \frac{lo*lo*lo}{l1*l2*l3}=1.0

                      taking natural log on both sides

                              ln(\frac{(lo*lo*lo)}{l1*l2*l3})=ln(1)

Considering the logarithmic Laws of division and multiplication :

                                ln(AB) = ln(A)+ln(B)

                                ln(A/B) = ln(A)-ln(B)

                           ln(\frac{(l1)}{lo})*ln(\frac{(l2)}{lo})*ln(\frac{(l3)}{lo}) = 0

Use the image attached to see the definition of true strain defined as

                         ln(l1/1o)= ε₁

which then proves that ε₁+ε₂+ε₃ = 0

8 0
3 years ago
Determine the constant speed at which the cable at A must be drawn in by the motor in order to hoist the load 6 m in 1.5s
zlopas [31]

Answer:

4m/s

Explanation:

We know that power supplied by the motor should be equal to the rate at which energy is increased of the mass that is to be hoisted

Mathematically

Power_{motor} } =\frac{Energy }{time}\

We also know that Power = force x velocity      ..................(i)

The force supplied by the motor should be equal to the weight (mg) of the block since we lift the against a force equal to weight of load

=> power = mg x Velocity........(ii)

While hoisting the load at at constant speed only the potential energy of the mass increases

Thus Potential energy = Mass x g x H...................(iii)

where

g = accleration due to gravity (9.81m/s2)

H = Height to which the load is hoisted  

Equating equations (ii) and (iii) we get

m x g x v = \frac{mgh}{t}

thus we get v = H/t

Applying values we get

v = 6/1.5 = 4m/s

5 0
3 years ago
A cylindrical resistor element on a circuit board dissipates 0.6 W of power. The resistor is 1.5 cm long, and has a diameter of
Burka [1]

Answer:

a. 51.84Kj

b. 2808.99 W/m^2

c. 11.75%

Explanation:

Amount of heat this resistor dissipates during a 24-hour period

= amount of power dissipated * time

= 0.6 * 24 = 14.4 Watt hour

(Note 3.6Watt hour = 1Kj )

=14.4*3.6 = 51.84Kj

Heat flux = amount of power dissipated/ surface area

surface area = area of the two circular end  + area of the curve surface

=2*\frac{\pi D^{2} }{4} + \pi DL\\=2*\frac{\pi *(\frac{0.4}{100} )^{2} }{4} + \pi *\frac{0.4}{100} *\frac{1.5}{100}

= 2.136 *10^-4 m^{2}

Heat flux =\frac{0.6}{2.136 * 10^{-4} } = 2808.99 W/m^{2}

fraction of heat dissipated from the top and bottom surface

=\frac{\frac{2*\pi D^{2} }{4} }{\frac{2*\pi D^{2}}{4} + \pi DL } \\\\=\\\frac{\frac{2*\pi *(\frac{0.4}{100} )^{2} }{4} }{\frac{2*\pi *(\frac{0.4}{100}  )^{2} }{4} +\pi *\frac{0.4}{100} *\frac{1.5}{100} } \\\\=\frac{2.51*10^{-5} }{2.136*10^{-4} } \\\\\= 0.1175

=11.75%

8 0
3 years ago
Read 2 more answers
Other questions:
  • Your new mobile phone business is now approaching its first anniversary and you are able to step back and finally take a deep br
    8·1 answer
  • Design a stepped-impedance low-pass filter having a cutoff frequency of 3 GHz and a fifth-order 0.5 dB equal-ripple response. As
    9·1 answer
  • Convert mechanical energy into electric energy. What can he use?
    13·1 answer
  • A thermistor is a temperature‐sensing element composed of a semiconductor material, which exhibits a large change in resistance
    13·1 answer
  • Nitrogen enters a steady-flow heat exchanger at 150 kPa, 10°C, and 100 m/s, and it receives heat as it flows through it. Nitroge
    15·1 answer
  • B1) 20 pts. The thickness of each of the two sheets to be resistance spot welded is 3.5 mm. It is desired to form a weld nugget
    8·1 answer
  • A block of ice weighing 20 lb is taken from the freezer where it was stored at -15"F. How many Btu of heat will be required to c
    15·1 answer
  • How may a Professional Engineer provide notice of licensure to clients?
    9·1 answer
  • Can someone please help me?
    11·2 answers
  • From the list of problems below, check all that are known to be NP-complete. You do not need to justify your answer. (Set cover)
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!