Answer:
26.3 moles of O₂ are needed to react completely with 35.0 mol of FeCl₃
Explanation:
To determine the number of moles of O₂ that are needed to react completely with 35.0 mol of FeCl₃, it is possible to use the reaction stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction), and rule of three as follows: if 4 moles of FeCl₃ react with 3 moles of O₂, 35 moles of FeCl₃ with how many moles of O₂ will it react?

moles of O₂= 26.25 ≅ 26.3
<u><em>26.3 moles of O₂ are needed to react completely with 35.0 mol of FeCl₃</em></u>
All i know that we are HOOman
Explanation:
Bond order is inversely proportional to the bond length.

In
molecule. one nitrogen is double bonded to nitrogen and one oxygen is single bonded to nitrogen and hydrogen bond.
- Bond order between the (N=O) bond is 2 which means that bond length between the (N=O) bond is shorter than that of the N-O bond.
- Bond order between the (N-O) bond is 1 which means that bond length of the N-O bond is longer than that of the bond length of (N=O) bond.
Answer:
Explanation:
Lewis dot structures represent the symbol of an atom we're looking at and the number of valence electrons it has. This number is represented by the sum of dots around the symbol.
- Potassium is in group 1A, this means it only has one valence electron, so we draw K with one dot in its Lewis diagram;
- Argon is in group 8A, this means it has eight valence electrons, so we draw Ar with 8 dots around it in its Lewis diagram;
- Silicon is in group 4A, this means it has four valence electrons, so we draw Si with 4 dots around it in its Lewis diagram;
- Arsenic is in group 5A, this means it has five valence electrons, so we draw As with 5 dots around it in its Lewis diagram.
Those are represented in the image attached below:
Explanation:
The smaller numbers in the image below represents the <u>subscripts</u>.