let's first off convert those mixed fractions to improper fractions, then get their difference.
![\bf \stackrel{mixed}{1\frac{1}{2}}\implies \cfrac{1\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{3}{2}}~\hfill \stackrel{mixed}{2\frac{1}{10}}\implies \cfrac{2\cdot 10+1}{10}\implies \stackrel{improper}{\cfrac{21}{10}} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \cfrac{21}{10}-\cfrac{3}{2}\implies \stackrel{\textit{using the LCD of 10}}{\cfrac{(1)21-(5)3}{10}}\implies \cfrac{21-15}{10}\implies \cfrac{6}{10}\implies \cfrac{3}{5}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B1%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B1%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B3%7D%7B2%7D%7D~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B2%5Cfrac%7B1%7D%7B10%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Ccdot%2010%2B1%7D%7B10%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B21%7D%7B10%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Ccfrac%7B21%7D%7B10%7D-%5Ccfrac%7B3%7D%7B2%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Busing%20the%20LCD%20of%2010%7D%7D%7B%5Ccfrac%7B%281%2921-%285%293%7D%7B10%7D%7D%5Cimplies%20%5Ccfrac%7B21-15%7D%7B10%7D%5Cimplies%20%5Ccfrac%7B6%7D%7B10%7D%5Cimplies%20%5Ccfrac%7B3%7D%7B5%7D)
now, the original amount, 3/2, if that is the 100%, what is 3/5 off of it in percentage?

Answer:
$6400
Step-by-step explanation:
4000x.05=200× 12=2400+4000=$6400
Answer:
The square root of three is irrational.
Step-by-step explanation:
You haven't provided the required roots, but I can tell you how to do this kind of exercises in general.
If the
coefficient is 1, i.e. the equation is written like
, then you can say the following about the coefficients b and c:
is the opposite of the sum of the roots
is the multiplication of the roots.
So, for example, if we want an equation whose roots are 4 and -2, we have:
So, the equation is 
If your roots are rational, you can work like this: suppose you want an equation with roots 3/4 and 1/2. You have:
And so the equation is

In order to have integer coefficients, you can multiply both sides of the equation by 8:

y = mx + b
To find the slope(m), you use the slope formula:

You plug in the points into the equation.


The slope is 0
y = 0x + b
Any number multiplied by 0 is 0. So:
y = b
To find b, you plug in the y value of either of the points.
-4 = b
Your equation is:
y = -4 (This is a horizontal line)