Answer:
Y = 92.5 %
Explanation:
Hello there!
In this case, since the reaction between lead (II) nitrate and potassium bromide is:

Exhibits a 1:2 mole ratio of the former to the later, we can calculate the moles of lead (II) bromide product to figure out the limiting reactant:

Thus, the limiting reactant is the KBr as it yields the fewest moles of PbBr2 product. Afterwards, we calculate the mass of product by using its molar mass:

And the resulting percent yield:

Regards!
Answer:
The mass percentage of carbon can be found easily using the molar mass of C6H12O6, 180.1559 g/mol. We need to find the mass of the glucose produced, so we multiply the number of moles of glucose by its molar mass. C6H12O6 = CO2 + C3H6O3 + CH3OCH3 Take fructose for example. Compound.
Explanation: I looked it up
Answer:9.18 m/s
Explanation:
The average speed for the entire trip is found ......total distance/total time. Remember r*t=d, so divide both sides by t and get r = d/t.
So the cyclist went 800+500+1200 m = 2500 m for total distance.
10t =800 leads to t=80 sec
5t=500 leads to t=100 sec
13t = 1200 leads to t = 92.3 sec
total time is 272.3 sec
Average speed for the entire trip is 2500 / 272.3 = 9.18 m/s
95.6 cal
are needed.
Explanation:
Use the following equation:
q
=
m
c
Δ
T
,
where:
q
is heat energy,
m
is mass,
c
is specific heat capacity, and
Δ
T
is the change in temperature.
Δ
T
=
T
final
−
T
initial
Known
m
=
125 g
c
Pb
=
0.130
J
g
⋅
∘
C
T
initial
=
17.5
∘
C
T
final
=
42.1
∘
C
Δ
T
=
42.1
∘
C
−
17.5
∘
C
=
24.6
∘
C
Unknown
q
Solution
Plug the known values into the equation and solve.
q
=
(
125
g
)
×
(
0.130
J
g
⋅
∘
C
)
×
(
24.6
∘
C
)
=
400. J
(rounded to three significant figures)
Convert Joules to calories
1 J
=
0.2389 cal
to four significant figures.
400
.
J
×
0.2389
cal
1
J
=
95.6 cal
(rounded to three significant figures)
95.6 cal
are needed.
Answer with Explanation:
Different versions of a gene are called alleles. Alleles are described as either dominant or recessive depending on their associated traits. Since human cells carry two copies of each chromosome they have two versions of each gene.