An example of a reaction that occurs within the core of a nuclear reactor is the nuclear fission reaction given:
- ²³⁵₉₂U + ¹₀n ---> ⁹⁰₃₈Sr + ¹⁴³₅₄ + 3 ¹₀n
<h3>What is a nuclear reactor?</h3>
A nuclear reactor is a device which produces electrical energy as a result of the nuclear reactions that take place within it.
In a nuclear reactor, the reaction that takes place within the core is a nuclear fission chain reaction.
In a nuclear fission reaction, the nucleus of larger atoms are split into the nucleus of smaller atoms when fast moving neutrons are used to bombard the nucleus of the large atom. The fission of the nucleus of the large atom results in the formation of atoms of lighter nucleus as well as more protons which then bombard more nucleus of the large atoms resulting in a chain reaction.
The chain reaction occurring within the nuclear reactor core is controlled by the insertion of boron rods which absorbs the excess neutrons produced.
An example of a reaction that occurs within the core of a nuclear reactor is given below:
²³⁵₉₂U + ¹₀n ---> ⁹⁰₃₈Sr + ¹⁴³₅₄ + 3 ¹₀n
Learn more about nuclear fission at: brainly.com/question/913303
#SPJ1
1. Physical
2. Chemical
3. Physical
4. Physical
5. Chemical
6. I really don't feel like doing 6, sorry.
7. False: energy to mass
11. False: change to exothermic
12. False: change to endothermic
Answer:
1. an educated guess
2. data
3. what changes in experiment
4. what stays the same in both groups
5. the group where nothing changes, normal
6. group with independent variable, what's being tested
Step 1 - Discovering the ionic formula of Chromium (III) Carbonate
Chromium (III) Carbonate is formed by the ionic bonding between Chromium (III) (Cr(3+)) and Carbonate (CO3(2-)):

Step 2 - Finding the molar mass of the substance
To find the molar mass, we need to multiply the molar mass of each element by the number of times it appears in the formula of the substance and, finally, sum it all up.
The molar masses are 12 g/mol for C; 16 g/mol for O and 52 g/mol for Cr. We have thus:

The molar mass will be thus:

Step 3 - Finding the percent composition of carbon
As we saw in the previous step, the molar mass of Cr2(CO3)3 is 284 g/mol. From this molar mass, 36 g/mol come from C. We can set the following proportion:

The percent composition of Carbon is thus 12.7 %.
You should always do A. form a hypothesis before performing an experiment also the other options cannot happen until after an experiment.