Answer:
Explanation:
Since the transferred heat is equal to the change in the internal energy, the heat is proportional to the mass of the substance and the temperature change. The transferred heat also depends on the substance so that, for example, the heat necessary to raise the temperature is less for alcohol than for water. Hope that helps!:)
Answer: A strong acid like HCl dissociates completely in an aqueous solution.
By definition a strong acid is that that dissociates completely in aqueous solutions. That means that all the molecules of the acid will be inoized into hydronium cation (H3O+) and anion (the negative radical).
For expample, HCl is a strong acid because
HCl + H2O----> H3O(+) + Cl-
The forwar arrow indicates that all the molecules of HCl reacted with the water for form the ions.
Answer:

Explanation:
We are asked to find the new volume of a gas after a change in temperature. We will use Charles's Law, which states the volume of a gas is directly proportional to the temperature. The formula for this law is:

The gas was heated to 150 degrees Celsius and had a volume of 1587.4 liters.

The temperature was 100 degrees Celsius, but the volume is unknown.

We are solving for the volume at 100 degrees Celsius, so we must isolate the variable V₂. It is being divided by 100°C and the inverse of division is multiplication. Multiply both sides of the equation by 100°C.


The units of degrees Celsius cancel.



The original measurement of volume has 5 significant figures, so our answer must have the same. For the number we calculated, that is the tenth place. The 6 in the hundredth place to the right tells us to round to 2 up to a 3.

The volume of the gas at 100 degrees Celsius is approximately <u>1058.3 liters.</u>
<span>100 g of KClO3 @ 122.55 g/mol = 0.816 moles of KClO3
by the reaction
2 KClO3 --> 2 KCl & 3 O2
0.816 moles of KClO3 @ 3 moles O2 / 2 moles KClO3 = 1.224 moles of O2 can be made
using molar mass
1.224 moles of O2 @ 32.0 g/mol =
39.2 grams of O2 can be made</span>