<h2>
Answer: 56.718 min</h2>
Explanation:
According to the Third Kepler’s Law of Planetary motion<em> </em><em>“The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.
</em>
In other words, this law states a relation between the orbital period
of a body (moon, planet, satellite) orbiting a greater body in space with the size
of its orbit.
This Law is originally expressed as follows:
(1)
Where;
is the Gravitational Constant and its value is
is the mass of Mars
is the semimajor axis of the orbit the spacecraft describes around Mars (assuming it is a <u>circular orbit </u>and a <u>low orbit near the surface </u>as well, the semimajor axis is equal to the radius of the orbit)
If we want to find the period, we have to express equation (1) as written below and substitute all the values:
(2)
(3)
(4)
Finally:
This is the orbital period of a spacecraft in a low orbit near the surface of mars
(a) The time for the capacitor to loose half its charge is 2.2 ms.
(b) The time for the capacitor to loose half its energy is 1.59 ms.
<h3>
Time taken to loose half of its charge</h3>
q(t) = q₀e-^(t/RC)
q(t)/q₀ = e-^(t/RC)
0.5q₀/q₀ = e-^(t/RC)
0.5 = e-^(t/RC)
1/2 = e-^(t/RC)
t/RC = ln(2)
t = RC x ln(2)
t = (12 x 10⁻⁶ x 265) x ln(2)
t = 2.2 x 10⁻³ s
t = 2.2 ms
<h3>
Time taken to loose half of its stored energy</h3>
U(t) = Ue-^(t/RC)
U = ¹/₂Q²/C
(Ue-^(t/RC))²/2C = Q₀²/2Ce
e^(2t/RC) = e
2t/RC = 1
t = RC/2
t = (265 x 12 x 10⁻⁶)/2
t = 1.59 x 10⁻³ s
t = 1.59 ms
Thus, the time for the capacitor to loose half its charge is 2.2 ms and the time for the capacitor to loose half its energy is 1.59 ms.
Learn more about energy stored in capacitor here: brainly.com/question/14811408
#SPJ1
Are you referring to try to get into a college? if you are here is a basic outlay...
Your Street Address
City, State, Zip Code
Date
Name of Person, Title
Company/Organization
Street Address
City, State, Zip Code
Dear Mr./Ms./Dr. :
Introduction: State your reason for writing. Name the specific position or type of work for which you are applying. (Mention how you heard about the opening, if appropriate.)
Body: Explain why you are interested in working for that employer, or in that field of work, and what your qualifications are. Highlight two to three achievements that relate to the position and field. Refer the reader to the enclosed resume, application, and/or portfolio.
Closing: Thank the reader for his or her time and consideration. Indicate your desire for an interview and provide your contact information. If the employer is willing to accept phone calls, state that you will call to discuss the possibility of scheduling an interview.
Sincerely,
Your Name
<span>Enclosure / Attachment
</span>
Answer:
Time and velocity
Explanation:
The time taken for the velocity to double is very important to find the amount of acceleration the car acquires.
Acceleration is the rate of change of velocity with time.
Acceleration =
v is the initial velocity
u is the final velocity
t is the time taken
So, the velocity and time is needed to calculate the value of the acceleration the car undergoes.
Answer:
Actually, surface tension is the to force per unit length. That means formula for surface tension is = force/length . As we know that the dimensional formula for length is L . And that for force is MLT^-2. So the dimensional formula for surface tension can be obtained by dividing the dimensional formula of force and length.
Explanation: