Answer:
The right response will be "450 volts".
Explanation:
The given values are:
R1 = 4.00 cm
R2 = 6.00 cm
q1 = +6.00 nC
q2 = −9.00 nC
As we know,
The potential difference between the two shell's difference will be:
⇒ ![\Delta V=K[(\frac{q1}{R1}+\frac{q2}{R2})-(\frac{q1}{R1} +(\frac{q2}{R2}))]](https://tex.z-dn.net/?f=%5CDelta%20V%3DK%5B%28%5Cfrac%7Bq1%7D%7BR1%7D%2B%5Cfrac%7Bq2%7D%7BR2%7D%29-%28%5Cfrac%7Bq1%7D%7BR1%7D%20%2B%28%5Cfrac%7Bq2%7D%7BR2%7D%29%29%5D)
![=K[\frac{q1}{R2}-\frac{q1}{R1} ]](https://tex.z-dn.net/?f=%3DK%5B%5Cfrac%7Bq1%7D%7BR2%7D-%5Cfrac%7Bq1%7D%7BR1%7D%20%5D)
On substituting the values, we get
Δ 
Answer:
* most of the emission would be in the infrared part, the visible radiation would be very small.
*total intensity of the semition decreases that the intensity depends on the fourth power of the temperature
Explanation:
The radiation emitted by the Sun is approximately the radiation of a black body, if the Sun were to cool, the maximum emission wavelength changes
λ T = 2,898 10⁻³
λ = 2,898 10⁻³ / T
if the temperature decreases the maximum wavelength the greater values are moved, that is to say towards the infrared. Therefore the emission curve also moves, in this case most of the emission would be in the infrared part, the visible radiation would be very small.
Furthermore, the total intensity of the semition decreases that the intensity depends on the fourth power of the temperature according to Stefan's law
P = σ A eT⁴
The answer is D. Small object made of ice and dust that orbits the Sun and forms a coma as it approaches the Sun.
Answer:
b) q large and m small
Explanation:
q is large and m is small
We'll express it as :
q > m
As we know the formula:
F = Eq
And we also know that :
F = Bqv
F = 
Bqv = 
or Eq = 
Assume that you want a velocity selector that will allow particles of velocity v⃗ to pass straight through without deflection while also providing the best possible velocity resolution. You set the electric and magnetic fields to select the velocity v⃗ . To obtain the best possible velocity resolution (the narrowest distribution of velocities of the transmitted particles) you would want to use particles with q large and m small.
<span>The equation of motion for a rocket in
vertical flight can be obtained from newton’s second law of motion and is
constant-mass system. The equation of motion for a body mass varies with time and mass. When force acts on rocket, the rocket
will accelerate in the direction of force. Therefore, force is equal to the
change in momentum per change in time. For constant mass, force equals mass
times acceleration.</span>