Given:
Measure of a cube = 1 unit on each side.
Dimensions of a space 2 units by 3 units by 4 units.
To find:
Number of cubes that can be fit into the given space.
Solution:
The volume of cube is:

Where, a is the side length of cube.


So, the volume of the cube is 1 cubic units.
The volume of the cuboid is:

Where, l is length, w is width and h is height.
Putting
, we get


So, the volume of the space is 24 cubic units.
We need to divide the volume of the space by the volume of the cube to find the number of cubes that can be fit into the given space.



Therefore, 24 cubes can be fit into the given space.
Answer:
step by step and the dog got 10 fire wood
Put your points in a graphing calculator and it will show you the answer
Answer: 2, 6.
Step-by-step explanation:
On edge! If right please mark brainliest!
Answer:
√3 is irrational
Step-by-step explanation:
The location of the third point of a triangle can be found using a rotation matrix to transform the coordinates of the given points.
<h3 /><h3>Location of point C</h3>
With reference to the attached figure, the slope of line AC is √3, an irrational number. This means the line AC <em>never passes through a point with integer coordinates</em>. (Any point with integer coordinates would be on a line with rational slope.)
<h3>Equilateral triangle</h3>
The line segments making up an equilateral triangle are separated by an angle of 60°. If two vertices are on grid squares, the third must be a rotation of one of them about the other through an angle of 60°. The rotation matrix is irrational, so the rotated point must have irrational coordinates.
The math of it is this. For rotation of (x, y) counterclockwise 60° about the origin, the transformation matrix is ...
![\left[\begin{array}{cc}\cos(60^\circ)&\sin(60^\circ)\\-\sin(60^\circ)&\cos(60^\circ)\end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right]=\left[\begin{array}{c}x'\\y'\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Ccos%2860%5E%5Ccirc%29%26%5Csin%2860%5E%5Ccirc%29%5C%5C-%5Csin%2860%5E%5Ccirc%29%26%5Ccos%2860%5E%5Ccirc%29%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%27%5C%5Cy%27%5Cend%7Barray%7D%5Cright%5D)
Cos(60°) is rational, but sin(60°) is not. For any non-zero rational values of x and y, the sum ...
cos(60°)·x + sin(60°)·y
will be irrational.
As in the attached diagram, if one of the coordinates of the rotated point (B) is zero, then one of the coordinates of its image (C) will be rational. The other image point coordinate cannot be rational.