The answer is letteer C. You just have to multiply 9 and pi
Answer:Dilation involves changing the size of a shape.
The true statement is that the locations of E' and F' are E' (−12, 0) and F' (0, 6), and lines g and g' are parallel.
The given parameters are:
--- the scale factor
Multiply the coordinates of point E and F by the scale factor (k), to determine the new coordinates of E and F.
Given that line g is represented by points E and F; line g' would be represented by points E' and F'
So, both lines would be parallel.
Hence, the true option is (d)
Step-by-step explanation:
is the inequality that describes this problem
<h3><u>Solution:</u></h3>
Given that Travis can spend no more than $125.75 every month
To find: linear inequality that describes the problem
Let the amount spent on movies = x dollars
Given that Travis decided to spend 4.3 times as much money on video games as he spends on movies
Amount spent on video games = 4.3 (amount spent on movies)
Amount spent on video games = 4.3x
Travis can spend no more than $125.75. That is, he can spend less than or equal to $125.75
<em><u>Thus, the inequality representing the situation is:</u></em>


Thus the required inequality is found
try desmos u can type it in and it will show you but the answer is 1.333
1/2sqrt((x_1^2+y_1^2)(x_2^2+y_2^2))
The area of a triangle is equal to 1/2bh (one half base times height). Since this is a right triangle, the base and height are the two legs connected to the 90* angle. To find the values of these sides, we will use Pythagorean Theorem, root a squared plus b squared.
Short leg: <x(1),y(1)>
This leg can be seen as the hypotenuse of an invisible right triangle. The x value, x(1), is how far over the x value has gone from the origon at x=0. Imagine a leg alone the x-axis, going from (0,0) to (x(1),0). The y value of the point, y(1), works the same way. This leg will go from our previous mark at (x(1),0) to the point (x(1),y(1)). This shows that the short leg of the main triangle is the hypotenuse, with a height of y(1) and base of x(1). Pythagoreum Theorem shows that the length of this leg is equal to sqrt(x_1^2+y_1^2).
Long leg: <x(2), y(2)>
The same process works here, giving us sqrt(x_2^2+y_2^2).
Now for the area, we have the b and h values. Our equation reads 1/2sqrt(x_1^2+y_1^2)sqrt(x_2^2+y_2^2).
But we can simplify this (yay). The two square roots can be written together as sqrt((x_1^2+y_1^2)(x_2^2+y_2^2))
So the correct answer is 1/2sqrt((x_1^2+y_1^2)(x_2^2+y_2^2))