Answer:
Mass of 1 mole of copper is 63.83 g.
0.03916 moles of copper atoms have a mass equal to the 2.5 grams of copper penny.
Explanation:
Mass of 1 copper atom,m = 

Mass of 1 mole of copper :
= 
Mass of 1 mole of copper = 63.83 g
Mass of copper penny = 2.5 g
Atomic mass of copper = 63.83 g/mol
Moles of copper in 2.5 g of copper penny:

0.03916 moles of copper atoms have a mass equal to the 2.5 grams of copper penny.
Answer:
48.8%
Explanation:
The reaction has a 1:1 mole ratio so;
Number of moles of benzoic acid reacted = mass/molar mass = 3.8 g/122.12 g/mol = 0.03 moles
So;
0.03 moles of methyl benzoate is formed in the reaction
Mass of methyl benzoate formed = 0.03 moles * 136.15 g/mol = 4.1 g
percent yield = actual yield/theoretical yield * 100/1
percent yield = 2.0 g/4.1 g * 100 = 48.8%
Answer:but-1-ene
Explanation:This is an E2 elimination reaction .
Kindly refer the attachment for complete reaction and products.
Sodium tert-butoxide is a bulky base and hence cannot approach the substrate 2-chlorobutane from the more substituted end and hence major product formed here would not be following zaitsev rule of elimination reaction.
Sodium tert-butoxide would approach from the less hindered side that is through the primary centre and hence would lead to the formation of 1-butene .The major product formed in this reaction would be 1-butene .
As the mechanism of the reaction is E-2 so it will be a concerted mechanism and as sodium tert-butoxide will start abstracting the primary hydrogen through the less hindered side simultaneously chlorine will start leaving. As the steric repulsion in this case is less hence the transition state is relatively stabilised and leads to the formation of a kinetic product 1-butene.
Kinetic product are formed when reactions are dependent upon rate and not on thermodynamical stability.
2-butene is more thermodynamically6 stable as compared to 1-butene
The major product formed does not follow the zaitsev rule of forming a more substituted alkene as sodium tert-butoxide cannot approach to abstract the secondary proton due to steric hindrance.
Answer:
2.
Explanation:
This should be right hopefully it is!
1. should be A
Explanation:
because that's what I got