At STP, or standard temperature and pressure, 1 mol of any gas will take up 22.4 liters of space. Assuming STP, 4.5 moles of H2 will take up 100.8L.
Answer:
(a) adding 0.050 mol of HCl
Explanation:
A buffer is defined as the mixture of a weak acid and its conjugate base -or vice versa-.
In the buffer:
1.0L × (0.10 mol / L) = 0.10 moles of HF -<em>Weak acid-</em>
1.0L × (0.050 mol / L) = 0.050 moles of NaF -<em>Conjugate base-</em>
-The weak acid reacts with bases as NaOH and the conjugate base reacts with acids as HCl-
Thus:
<em>(a) adding 0.050 mol of HCl:</em> The addition of 0.050moles of HCl produce the reaction of 0.050 moles of NaF producing HF. That means after the reaction, all NaF is consumed and you will have in solution just the weak acid <em>destroying the buffer</em>.
(b) adding 0.050 mol of NaOH: The NaOH reacts with HF producing more NaF. Would be consumed just 0.050 moles of HF -remaining 0.050 moles of HF-. Thus, the buffer <em>wouldn't be destroyed</em>.
(c) adding 0.050 mol of NaF: The addition of conjugate base <em>doesn't destroy the buffer</em>
Answer:
It cannot conduct electricity, however adding salt or sugar will make the water have impurities/other substance making it easier to conduct electricity
Explanation:
Distilled water by itself does not contain impurities, thus, it cannot <em>conduct </em>electricity.
When you put salt in water, the water molecules pull the sodium and chlorine ions apart so they are floating freely, increasing the conductivity.
For more information, please refer to the internet :D
Have fun studying, and goodluck!
If you are satisfied with this answer, please rate it or give <u><em>brainliest.</em></u>
Answer:
[H₃O⁺] = 0.05 M & [OH⁻] = 2.0 x 10⁻¹³.
Explanation:
- HNO₃ is completely ionized in water as:
<em>HNO₃ + H₂O → H₃O⁺ + NO₃⁻.</em>
- The concentration of hydronium ion is equal to the concentration of HNO₃:
[H₃O⁺] = 0.05 M.
∵ [H₃O⁺][OH⁻] = 10⁻¹⁴.
<em>∴ [OH⁻] = 10⁻¹⁴/[H₃O⁺] </em>= 10⁻¹⁴/0.05 = <em>2.0 x 10⁻¹³.</em>